Skip to main content

Gene Targeting in Cultured Human Cells

  • Protocol
Cell Cycle Checkpoint Control Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 241))

  • 1198 Accesses

Abstract

The technique described in this chapter—gene targeting in cultured human cancer cells—brings a powerful tool to scientists studying the function of cell cycle control genes (1). This technology allows scientists to knock out genes in cultured human cells in an analogous fashion to the creation of knockout mice. This approach brings the power of genetics (the comparison of cells or organisms that are genetically identical except for a single, well-defined mutation) to the study of human genes in cultured human cells. Gene targeting is a particularly valuable approach for the study of cell cycle control genes because ectopic expression of these genes frequently results in cell cycle arrest or apoptosis. To date, several cell cycle control genes have been studied using human somatic-cell gene targeting, including p21WAF1/CIP1, p53, 14-3-3σ, and (ataxia-telangiectasia and Rad3 [ATR]) (25).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedivy, J. M. and Dutriaux, A. (1999) Gene targeting and somatic cell genetics—a rebirth or a coming of age? Trends Genet. 15, 88–90.

    Article  PubMed  CAS  Google Scholar 

  2. Waldman, T., Kinzler, K. W., and Vogelstein, B. (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190.

    PubMed  CAS  Google Scholar 

  3. Bunz, F., Dutriaux, A., Lengauer, C., et al. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  4. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620.

    Article  PubMed  CAS  Google Scholar 

  5. Cortez, D., Guntuku, S., Qin, J., and Elledge, S. J. (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716.

    Article  PubMed  CAS  Google Scholar 

  6. Hanson, K. D. and Sedivy, J. M. (1995) Analysis of biological selections for high-efficiency gene targeting. Mol. Cell. Biol. 15, 45–51.

    PubMed  CAS  Google Scholar 

  7. Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J., and Brattain, D. E. (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 41, 1751–1756.

    PubMed  CAS  Google Scholar 

  8. Dexter, D. L., Barbosa, J. A., and Calabresi, P. (1979) N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 39, 1020–1025.

    PubMed  CAS  Google Scholar 

  9. Shirasawa, S., Furuse, M., Yokoyamo, N., and Sasazuki, T. (1993) Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260, 85–88.

    Article  PubMed  CAS  Google Scholar 

  10. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature 396, 643–649.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, J. P., Wei, W., and Sedivy, J. M. (1997) Bypass of senescence after disruption of p21WAF1/CIP1 gene in normal diploid human fibroblasts. Science 277, 831–834.

    Article  PubMed  CAS  Google Scholar 

  12. Storck, T., Kruth, U., Kolhekar, R., Sprengel, R., and Seeburg, P. (1996) Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res. 24, 4594–4596.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Waldman, T.A. (2004). Gene Targeting in Cultured Human Cells. In: Lieberman, H.B. (eds) Cell Cycle Checkpoint Control Protocols. Methods in Molecular Biology™, vol 241. Humana Press. https://doi.org/10.1385/1-59259-646-0:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-646-0:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-115-8

  • Online ISBN: 978-1-59259-646-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics