Skip to main content

Side Effects of Suicide Gene Therapy

  • Protocol
Suicide Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 90))

  • 597 Accesses

Abstract

The efficacy of standard chemotherapy tends to be limited by an inability to achieve sufficiently high drug concentrations to tumor cells without inducing concomitant toxicity elsewhere. If the tumor itself were induced to produce the drug, the efficacy would be increased. This strategy can be achieved by installing in tumor cells a gene that can activate a harmless prodrug into a cytotoxic drug. The premise is that activation of prodrugs in or near the tumor would lead locally to a high concentration of the toxic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Q., Kay, M. A., Finegold, M., Stratford-Perricaudet, L. D., and Woo, S. L. (1993) Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4, 403ā€“409.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Oā€™Neal, W. K., Zhou, H., Morral, N., et al. (1998) Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum. Gene Ther. 9, 1587ā€“1598.

    ArticleĀ  Google ScholarĀ 

  3. Wilmott, R. W., Amin, R. S., Perez, C. R., et al. (1996) Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. Hum. Gene Ther. 7, 301ā€“318.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Yang, Y., Su, Q., Grewal, I. S., et al. (1996) Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J. Virol. 70, 6370ā€“6377.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Hermens, W. T. and Verhaagen, J. (1997) Adenoviral vector-mediated gene expression in the nervous system of immunocompetent Wistar and T cell-deficient nude rats: preferential survival of transduced astroglial cells in nude rats. Hum. Gene Ther. 8, 1049ā€“1063.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Schnell, M. A., Zhang, Y., Tazelaar, J., et al. (2001) Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol. Ther. 3, 708ā€“722.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Zhang, Y., Chirmule, N., Gao, G., et al. (2001) Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol. Ther. 3, 697ā€“707.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Krisky, D. M., Wolfe, D., Goins, W. F., et al. (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5, 1593ā€“1603.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Link, C. J., Jr., Seregina, T., Levy, J. P., Martin, M., Ackermann, M., and Moorman, D. W. (2000) Murine retroviral vector producer cells survival and toxicity in the dog liver. In Vivo 14, 643ā€“649.

    PubMedĀ  Google ScholarĀ 

  10. Link, C. J., Jr., Moorman, D. W., Ackerman, M., Levy, J. P., and Seregina, T. (2000) Murine retroviral vector producer cells survival and toxicity in the peritoneal cavity of dogs. In Vivo 14, 635ā€“641.

    PubMedĀ  Google ScholarĀ 

  11. Rampling, R., Cruickshank, G., Papanastassiou, V., et al. (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 7, 859ā€“866.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Walther, W. and Stein, U. (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60, 249ā€“271.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Garrett, E., Miller, A. R., Goldman, J. M., Apperley, J. F., and Melo, J. V. (2000) Characterization of recombination events leading to the production of an ecotropic replication-competent retrovirus in a GP+envAM12-derived producer cell line. Virology 266, 170ā€“179.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Otto, E., Jones-Trower, A., Vanin, E. F., et al. (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum. Gene Ther. 5, 567ā€“575.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Fallaux, F. J., Van der Eb, A. J., and Hoeben, R. C. (1999) Whoā€™s afraid of replication-competent adenoviruses? Gene Ther. 6, 709ā€“712.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Wang, X. S., Khuntirat, B., Qing, K., et al. (1998) Characterization of wild-type adeno-associated virus type 2-like particles generated during recombinant viral vector production and strategies for their elimination. J. Virol. 72, 5472ā€“5480.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Allen, J. M., Debelak, D. J., Reynolds, T. C., and Miller, A. D. (1997) Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J. Virol. 71, 6816ā€“6822.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Rademaker, H. J., Abou El Hassan, M., and Hoeben, R. C. (2002) Mobilization of E1-deleted adenovirus type 5-derived vectors by wild-type viruses of other serotypes. J. Gen. Virol. 83, 1311ā€“1314.

    Google ScholarĀ 

  19. Afione, S. A., Conrad, C. K., Kearns, W. G., et al. (1996) In vivo model of adeno-associated virus vector persistence and rescue. J. Virol. 70, 3235ā€“3241.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Imler, J. L., Bout, A., Dreyer, D., et al. (1995) Trans-complementation of E1-deleted adenovirus: a new vector to reduce the possibility of codissemination of wild-type and recombinant adenoviruses. Hum. Gene Ther. 6, 711ā€“721.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Yu, S. F., von Ruden, T., Kantoff, P. W., et al. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194ā€“3198.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Naviaux, R. K., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701ā€“5705.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Olsen, J. C. and Swanstrom, R. (1985) A new pathway in the generation of defective retrovirus DNA. J. Virol. 56, 779ā€“789.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Mi, J., Li, Z.Y., Ni, S., Steinwaerder, D., and Lieber, A. (2001) Induced apoptosis supports spread of adenovirus vectors in tumors. Hum. Gene Ther. 12, 1343ā€“1352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Bramson, J. L., Hitt, M., Gauldie, J., and Graham, F. L. (1997) Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther. 4, 1069ā€“1076.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R., and Wilson, J. (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6, 1574ā€“583.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Elshami, A. A., Kucharczuk, J. C., Sterman, D. H., et al. (1995) The role of immunosup-pression in the efficacy of cancer gene therapy using adenovirus transfer of the herpes simplex thymidine kinase gene. Ann. Surg. 222, 298ā€“307.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Mastrangeli, A., Harvey, B. G., Yao, J., et al. (1996) ā€œSero-switchā€ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum. Gene Ther. 7, 79ā€“87.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Roy, S., Shirley, P. S., McClelland, A., and Kaleko, M. (1998) Circumvention of immunity to the adenovirus major coat protein hexon. J. Virol. 72, 6875ā€“6879.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Parks, R., Evelegh, C., and Graham, F. (1999) Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther. 6, 1565ā€“1573.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Goossens, P. H., Vogels, R., Pieterman, E., et al. (2001) The influence of synovial fluid on adenovirus-mediated gene transfer to the synovial tissue. Arthritis Rheum. 44, 48ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Rutledge, E. A., Halbert, C. L., and Russell, D. W. (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309ā€“319.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Schagen, F. H., Rademaker, H. J., Fallaux, F. J., and Hoeben, R. C. (2000) Insertion vectors for gene therapy. Gene Ther. 7, 271ā€“272.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Harui, A., Suzuki, S., Kochanek, S., and Mitani, K. (1999) Frequency and stability of chromosomal integration of adenovirus vectors. J. Virol. 73, 6141ā€“6146.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Kazazian, H. H., Jr. (1999) An estimated frequency of endogenous insertional mutations in humans. Nature Genet. 22, 130.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Van der Eb, M. M., Geutskens, S. B., Van Kuilenburg, A. B. P., et al. (2003) Ganciclovir nucleotides accumulate in mitochondria of rat liver cells expressing the herpes simplex virus thymidine kinase gene. J. Gene Med. (in press).

    Google ScholarĀ 

  37. Bordignon, C., Bonini, C., Verzeletti, S., et al. (1995) Transfer of the HSV-TK gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum. Gene Ther. 6, 813ā€“819.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Thomis, D. C., Marktel, S., Bonini, C., et al. (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97, 1249ā€“1257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550ā€“1552.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Moolten, F. L. (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 46, 5276ā€“5281.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Van der Eb, M. M., Cramer, S. J., Vergouwe, Y., et al. (1998) Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther. 5, 451ā€“458.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  42. Brand, K., Arnold, W., Bartels, T., et al. (1997) Liver-associated toxicity of the HSV-TK/GCV approach and adenoviral vectors. Cancer Gene Ther. 4, 9ā€“16.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Bustos, M., Sangro, B., Alzuguren, P., et al. (2000) Liver damage using suicide genes. A model for oval cell activation. Am. J. Pathol. 157, 549ā€“559.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Chen, S. H., Chen, X. H., Wang, Y., et al. (1995) Combination gene therapy for liver metastasis of colon carcinoma in vivo. Proc. Natl. Acad. Sci. USA 92, 2577ā€“2581.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Eck, S. L., Alavi, J. B., Alavi, A., et al. (1996) Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial. Hum. Gene Ther. 7, 1465ā€“1482.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Ackerman, N. B., Lien, W. M., Kondi, E. S., and Silverman, N. A. (1969) The blood supply of experimental liver metastases. I. The distribution of hepatic artery and portal vein blood to ā€œsmallā€ and ā€œlargeā€ tumors. Surgery 66, 1067ā€“1072.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Deimann, W. and Strobel, E. S. (1991) Activated macrophages induce hemopoietic islands in the adult rat liver. Blood Cells 17, 97ā€“101.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Ploemacher, R. E., Van Soest, P. L., and Vos, O. (1977) Kinetics of erythropoiesis in the liver induced in adult mice by phenylhydrazine. Scand. J. Haematol. 19, 424ā€“434.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Piacentini, G., Baronciani, L., Rapa, S., Benedetti, C., and Ninfali, P. (1990) Hepatic hematopoiesis in phenylhydrazine-induced hemolytic anemia. Boll. Soc. Ital. Biol. Sper. 66, 725ā€“728.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. de Roos, W. K., Fallaux, F. J., Marinelli, A. W., et al. (1997) Isolated-organ perfusion for local gene delivery: efficient adenovirus-mediated gene transfer into the liver. Gene Ther. 4, 55ā€“62.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Smith, T. A., Mehaffey, M. G., Kayda, D. B., et al. (1993) Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nature Genet. 5, 397ā€“402.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Lieber, A., Vrancken Peeters, M. J., et al. (1995) Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc. Natl. Acad. Sci. USA 92, 6210ā€“6214.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Wallace, H., Clarke, A. R., Harrison, D. J., Hooper, M. L., and Bishop, J. O. (1996) Ganciclovir-induced ablation non-proliferating thyrocytes expressing herpesvirus thymidine kinase occurs by p53-independent apoptosis. Oncogene 13, 55ā€“61.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Chen, C. H. and Cheng, Y. C. (1992) The role of cytoplasmic deoxycytidine kinase in the mitochondrial effects of the anti-human immunodeficiency virus compound, 2ā€²,3ā€²-dideoxycytidine. J. Biol. Chem. 267, 2856ā€“2859.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Lewis, W., Gonzalez, B., Chomyn, A., and Papoian, T. (1992) Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J. Clin. Invest. 89, 1354ā€“1360.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Lewis, W. and Perrino, F. W. (1996) Severe toxicity of fialuridine (FIAU). N. Engl. J. Med. 334, 1136ā€“1138.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Lewis, W., Levine, E. S., Griniuviene, B., etal. (1996) Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc. Natl. Acad. Sci. USA 93, 3592ā€“3597.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Colacino, J. M., Malcolm, S. K., and Jaskunas, S. R. (1994) Effect of fialuridine on replication of mitochondrial DNA in CEM cells and in human hepatoblastoma cells in culture. Antimicrob. Agents Chemother. 38, 1997ā€“2002.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Cui, L., Yoon, S., Schinazi, R. F., and Sommadossi, J. P. (1995) Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-beta-d-arabinofuranosyl)-5-iodouracil in human liver cells. J. Clin. Invest. 95, 555ā€“563.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Bakker, H. D., Scholte, H. R., Dingemans, K. P., Spelbrink, J. N., Wijburg, F. A., and Van den, B. C. (1996) Depletion of mitochondrial deoxyribonucleic acid in a family with fatal neonatal liver disease. J. Pediatr. 128, 683ā€“687.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Dalakas, M. C., Illa, I., Pezeshkpour, G. H., Laukaitis, J. P., Cohen, B., and Griffin, J. L. (1990) Mitochondrial myopathy caused by long-term zidovudine therapy. N. Engl. J. Med. 322, 1098ā€“1105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Freiman, J. P., Helfert, K. E., Hamrell, M. R., and Stein, D. S. (1993) Hepatomegaly with severe steatosis in HIV-seropositive patients. AIDS 7, 379ā€“385.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Gopinath, R., Hutcheon, M., Cheema-Dhadli, S., and Halperin, M. (1992) Chronic lactic acidosis in a patient with acquired immunodeficiency syndrome and mitochondrial myopathy: biochemical studies. J. Am. Soc. Nephrol. 3, 1212ā€“1219.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. McKenzie, R., Fried, M. W., Sallie, R., et al. (1995) Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 333, 1099ā€“1105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Herman, J. R., Adler, H. L., Aguilar-Cordova, E., et al. (1999) In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum. Gene Ther. 10, 1239ā€“1249.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Kuppen, P. J., Van der Eb, M. M., Jonges, L. E., et al. (2001) Tumor structure and extracellular matrix as a possible barrier for therapeutic approaches using immune cells or adenoviruses in colorectal cancer. Histochem. Cell Biol. 115, 67ā€“72.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. Curiel, D. T. and Rancourt, C. (1997) Conditionally replicative adenoviruses for cancer therapy. Adv. Drug Delivery Rev. 27, 67ā€“81.

    ArticleĀ  Google ScholarĀ 

  68. Khuri, F. R., Nemunaitis, J., Ganly, I., et al. (2000) a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879ā€“885.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Miyatake, S., Iyer, A., Martuza, R. L., and Rabkin, S. D. (1997) Transcriptional targeting of herpes simplex virus for cell-specific replication. J. Virol. 71, 5124ā€“5132.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. Oyama, M., Ohigashi, T., Hoshi, M., Murai, M., Uyemura, K., and Yazaki, T. (2001) Treatment of human renal cell carcinoma by a conditionally replicating herpes vector G207. J. Urol. 165, 1274ā€“1278.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Lambright, E. S., Amin, K., Wiewrodt, R., et al. (2001) Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Ther. 8, 946ā€“953.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Harrison, D., Sauthoff, H., Heitner, S., Jagirdar, J., Rom, W. N., and Hay, J. G. (2001) Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved: deletion of the viral E1B-19-kd gene increases the viral oncolytic effect. Hum. Gene Ther. 12, 1323ā€“1332.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2004 Humana Press Inc.

About this protocol

Cite this protocol

van der Eb, M.M., de Leeuw, B., van der Eb, A.J., Hoeben, R.C. (2004). Side Effects of Suicide Gene Therapy. In: Springer, C.J. (eds) Suicide Gene Therapy. Methods in Molecular Medicineā„¢, vol 90. Humana Press. https://doi.org/10.1385/1-59259-429-8:479

Download citation

  • DOI: https://doi.org/10.1385/1-59259-429-8:479

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-971-1

  • Online ISBN: 978-1-59259-429-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics