Skip to main content

Methodologies for Processing Biodegradable and Natural Origin Scaffolds for Bone and Cartilage Tissue-Engineering Applications

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

Abstract

The ultimate goal of tissue engineering is to replace, repair or enhance the biological function of damaged, absent or dysfunctional elements of a tissue or an organ. Engineered tissues are produced by using cells that are manipulated through their extracellular environment to develop living biological substitutes for tissues that are lacking or malfunctioning (15). Many different strategies may be used to accomplish this goal. Among the most important factors that determine the selection of the best strategy for developing and utilizing engineered tissues are the technical feasibility, the required properties of the implant, and the interaction of the host with the graft.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hardin-Young, J., Teumer, J., Ross, R. N., and Parenteau, N. L. (2000) Approaches to transplanting 1 engineered cells and tissues, in Principles of Tissue Engineering, 2nd ed. (Lanza, R., Langer, R., Vacanti, J., eds.), Academic Press, New York, NY, pp. 281–291.

    Chapter  Google Scholar 

  2. Bruder, S. P. and Caplan, A. I. (1997) Bone regeneration thought cellular engineering, in Principles of Tissue Engineering (Lanza, R., Langer, R., and Chick, W., eds.), Academic Press, New York, NY, pp. 273–293.

    Google Scholar 

  3. Yang, S., Leong, K. F., Du, Z., and Chua, C. K. (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering 7, 679–689.

    Article  CAS  Google Scholar 

  4. Tabata, Y. (2001) Recent progress in tissue engineering. Research Focus 6, 483–487.

    CAS  Google Scholar 

  5. Freyman, T. M., Yannas, I. V., and Gibson, L. J. (2001) Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science 46, 273–282.

    Article  CAS  Google Scholar 

  6. Pachence, J. M. and Kohn, J. (1997) Biodegradable polymers for tissue engineering, in Principles of Tissue Engineering (Lanza, R., Langer, R., Chick, W., eds.), Academic Press, New York, NY, pp. 273–293.

    Google Scholar 

  7. Thomson, R. C., Wake, M. C., Yaszemski, M., and Mikos, A. G. (1995) Biodegradable polymer scaffolds to regenerate organs. Adv. Polym. Sci. 122, 247–274.

    Google Scholar 

  8. Agrawal, C. M., Athanasiou, K. A., and Heckman, J. D. (1997) Biodegradable PLA-PGA polymers for tissue engineering in orthopaedics. Materials Science Forum 250, 115–228.

    Article  CAS  Google Scholar 

  9. Thomson, R., Yaszemski, M., and Mikos, A. (1997) Polymer Scaffold processing, in Principles of Tissue Engineering (Lanza, R., Langer, R., and Chick, W., eds.), Academic Press, New York, NY, pp. 263–272.

    Google Scholar 

  10. Lu, L. and Mikos, A. (1996) The importance of new processing techniques in tissue engineering. MRS Bulletin 21, 28–32.

    CAS  Google Scholar 

  11. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., and Langer, R. B. (1994) Preparation and characterization of poly(l-lactid acid) foams. Polymer 1068–1077.

    Google Scholar 

  12. Langer, R. (1999) Selected advances in drug delivery and tissue engineering. J. Control. Release 62, 7–11.

    Article  CAS  Google Scholar 

  13. Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P., and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323–330.

    Article  CAS  Google Scholar 

  14. Mikos, A. G., Bao, Y., Cima, L. G., Ingeber, D. E., Vacanti, J. P., and Langer, R. B. (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27, 183–189.

    Article  CAS  Google Scholar 

  15. Mooney, D. J., Baldwin, D. F., Suh, N. P., and Vacanti, J. P. (1996) Novel approach to fabricate porous sponges of poly (d,l-lactid-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422.

    Article  CAS  Google Scholar 

  16. Gomes, M. E., Ribeiro, A. S., Malafaya, P. B., Reis, R. L., and Cunha, A. M. (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22, 883–889.

    Article  CAS  Google Scholar 

  17. Thompson, R. C., Yaszemski, M. J., and Powders, J. M. (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. Journal Biomaterials Science—Polymer Edition 7, 23–28.

    Article  Google Scholar 

  18. Gomes, M. E., Reis, R. L., and Cunha, A. M. (2002) Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation behaviour and mechanical Properties. Materials Science and Engineering: C Biomimetic and Supramolecular Systems 20, 19–26.

    Google Scholar 

  19. Gomes, M. E. (2002), Godinho, J. S., Reis, R. L., and Cunha, A. M. Design and processing of starch based scaffolds for hard tissue engineering. Journal of Applied Medical Polymers 6, 75–80.

    CAS  Google Scholar 

  20. Malafaya, P. B., Elvira, C., Gallardo, A., Román, J. S., and Reis, R. L. (2001) Porous starch-based drug delivery system processed by a microwave route. J. Biomater. Sci.—Polym. Ed. 12, 1227–1241.

    Article  CAS  Google Scholar 

  21. Hutmacher, D. W. (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543.

    Article  CAS  Google Scholar 

  22. Hutmacher, D. W., Teoh, S. H., Zein, I., Renawake, M., and Lau, S. (2000) Tissue engineering Research: the engineer’s role. Medical Device Technology 1, 33–39.

    Google Scholar 

  23. Jiang, G. and Shi, D. (1997) Coating of hidroxylapatite on highly porous Al2O3 substrate for bone substitutes. J. Biomed. Mater. Res. 43, 77–88.

    Article  Google Scholar 

  24. Maquet, V. and Jerome, R. (1997) Design of macroporous biodegradable polymer scaffolds for cell transplantation, Materials Science Forum 250, 15–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Gomes, M.E., Malafaya, P.B., Reis, R.L. (2004). Methodologies for Processing Biodegradable and Natural Origin Scaffolds for Bone and Cartilage Tissue-Engineering Applications. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:65

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:65

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics