Skip to main content

Bioreactor Culture Techniques for Cartilage-Tissue Engineering

  • Protocol
Book cover Biopolymer Methods in Tissue Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 238))

  • 1175 Accesses

Abstract

Tissue engineering is a major focus of biotechnological research today, with the expectation that this type of technique will ultimately transform medical practice (1). The most ambitious tissue-engineering schemes assume that specific tissues and organs will be restored, in a multistage fabrication procedure. For example, cells derived from the patient may be processed to increase the total number available, seeded into a suitable three-dimensional (3D) resorbable scaffold and further processed in vitro to induce the elaboration of neo-tissue prior to implantation (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nerem, R. M. (2000) Tissue engineering: confronting the transplant crisis. Proc. Inst. Mech. Engrs. Part H, 214, 95–99.

    Article  CAS  Google Scholar 

  2. Bader, D. L. and Lee, D. A. (2000) Structure-properties of soft tissues: articular cartilage, in Structural Biological Materials: Design and Structure Property Relationships (Elices, M., ed.), Oxford, UK, Pergamon Press, pp. 73–104.

    Google Scholar 

  3. Ateshian, G.A., Soslowsky, L. J., and Mow, V. C. (1991) Quantitation of articular surface topography and cartilage thickness in knee joints using sterophotogram-metry. J. Biomechanics 24, 761–776.

    Article  CAS  Google Scholar 

  4. Enobakhare, B., Bader, D. L., and Lee, D. A. (2001) Physiochemical, biochemical and mechanical characterisation of chondrocyte/alginate constructs. Trans. Orthop. Res. Soc. 26, 638.

    Google Scholar 

  5. Wu, F., Dunkelman, N., Peterson, A., Davisson, T., De La Torre, R., and Jain, D. (1999) Bioreactor development for tissue-engineered cartilage. Ann. NY Acad. Sci. 875, 405–411.

    Article  CAS  Google Scholar 

  6. Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng. 63, 197–205.

    Article  CAS  Google Scholar 

  7. Huang, D., Chang, T. R., Aggarwal, A., Lee, R. C., and Ehrlich, H. P. (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21, 289–305.

    Article  CAS  Google Scholar 

  8. Freed, L. E., Vunjak-Novakovic, G., Biron, R.J., Eagles, D. B., Lesnoy, D. C., Barlow, S. K., et al. (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12, 689–693.

    Article  CAS  Google Scholar 

  9. Paige, K. T., Cima, L. G., Yaremchuk, M. J., Schloo, B. L., Vacanti, J. P., and Vacanti, C. A. (1996) De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast. Reconstr. Surg. 97, 68–78.

    Google Scholar 

  10. Begley, C. M. and Kleis, S. J. (2000) The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng. 70, 32–40.

    Article  CAS  Google Scholar 

  11. Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–138.

    Article  CAS  Google Scholar 

  12. Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., Freed, L. E., et al. (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37, 141–147.

    CAS  Google Scholar 

  13. Lee, D. A. and Bader, D. L. (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15, 181–188.

    Article  Google Scholar 

  14. Lee, D. A., Noguchi, T., Frean, S. P., Lees, P., and Bader, D. L. (2000) The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology 37, 149–161.

    CAS  Google Scholar 

  15. Vunjak-Novakovic, G., Obradovic, B., Martin I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Progr. 14, 193–202

    Article  CAS  Google Scholar 

  16. Freed, L. E., Hollander, A. P., Martin I., Barry, J. R., Langer, R., and Vunjak-Novakovic, G. (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240, 58–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Lee, D.A., Martin, I. (2004). Bioreactor Culture Techniques for Cartilage-Tissue Engineering. In: Hollander, A.P., Hatton, P.V. (eds) Biopolymer Methods in Tissue Engineering. Methods in Molecular Biology™, vol 238. Humana Press. https://doi.org/10.1385/1-59259-428-X:159

Download citation

  • DOI: https://doi.org/10.1385/1-59259-428-X:159

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-967-4

  • Online ISBN: 978-1-59259-428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics