Advertisement

Protein Carbonyl Levels—An Assessment of Protein Oxidation

  • Alessandra Castegna
  • Jennifer Drake
  • Chava Pocernich
  • D. Allan Butterfield
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Oxidative stress may be a hallmark of several neurodegenerative disorders, including Alzheimer’s disease (AD), Huntington’s disease (HD), and Parkinson’s disease (PD), as well as Creutzfeldt-Jakob disease (CJD), frontotemporal dementia, and amyotrophic lateral sclerosis (ALS) (1). Oxidative stress occurs when the formation of reactive oxygen species (ROS) increases, or when scavenging of ROS or repair of oxidatively modified molecules decreases (2,3). ROS are highly reactive, toxic oxygen moieties, such as hydroxyl radical, peroxyl radical, superoxide anion, and hydrogen peroxide. Collectively, ROS can lead to oxidation of proteins and DNA, peroxidation of lipids, and, ultimately, cell death. To counteract these damaging radicals, antioxidant systems have been developed. Among these are enzymes, such as glutathione peroxidase, glutathione reductase, superoxide dismutase (SOD), and catalase, among others; and small, nonprotein, cellular antioxidants such as, glutathione, vitamin C, vitamin E, and uric acid.

Keywords

Reactive Oxygen Species Amyotrophic Lateral Sclerosis Protein Carbonyl Frontotemporal Dementia Guanidine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Butterfield, D. A. and Kanski, J. (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech. Ageing Dev. 122, 945–962.PubMedCrossRefGoogle Scholar
  2. 2.
    Stadtman, E. R. (1992) Protein oxidation and aging. Science 257, 1220–1224.PubMedCrossRefGoogle Scholar
  3. 3.
    Butterfield, D. A. and Stadtman, E. R. (1997) Protein oxidation processes in aging brain. Adv. Cell Aging Gerontol. 2, 161–191.CrossRefGoogle Scholar
  4. 4.
    Howard, B. J., Yatin, S., Hensley, K., Allen, K. L., Kelly, J. P., Carney, J. M., and Butterfield, D. A. (1996) Prevention of hyperoxia-induced alterations in synaptosomal membrane-associated proteins by N-tert-butyl-α-phenyl-nitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol). J. Neurochem. 67, 2045–2050.PubMedCrossRefGoogle Scholar
  5. 5.
    Aksenov, M. Y., Aksenova, M. V., Mrkesbery, W. R., and Butterfield, D. A. (1998) Amyloid β-peptide (1–40)-mediated oxidative stress in cultured hippocampal neurons. J. Mol. Neurosci. 10, 181–192.PubMedCrossRefGoogle Scholar
  6. 6.
    Koppal, T., Drake, J., Yatin, S., Jordan, B., Varadarajan, S., Bettenhausen, L., and Butterfield, D. A. (1999) Peroxynitrite-induced alterations in synaptosomal membrane proteins: Insight into oxidative stress in Alzheimer’s disease. J. Neurochem. 72, 310–317.PubMedCrossRefGoogle Scholar
  7. 7.
    Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., et al. (1995) Brain regional correspondence between Alzheimer’s disease histopa-thology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.PubMedCrossRefGoogle Scholar
  8. 8.
    Yatin, S. M., Link, C. D., and Butterfield, D. A. (1999) In-vitro and in-vivo oxidative stress associated with Alzheimer’s amyloid β-peptide. Neurobiol. Aging 20, 325–330.PubMedCrossRefGoogle Scholar
  9. 9.
    LaFontaine, M. A., Geddies, J. W., Banks, A., and Butterfield, D. A. (2000) 3-Nitropropionic acid induced in-vivo protein oxidation in striatal and cortical synaptosomes: insights into Huntington’s disease. Brain Res. 858, 356–362.CrossRefGoogle Scholar
  10. 10.
    LaFontaine, M. A., Geddies, J. W., Banks, A., and Butterfield, D. A. (2000) Effect of exogenous and endogenous antioxidants on 3-nitropropionic acidinduced in-vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J. Neurochem. 75, 1709–1715.CrossRefGoogle Scholar
  11. 11.
    Chapman, M. L., Rubin, B. R., and Gracy, R. W. (1989) Increased carbonyl content of proteins in synovial fluid from patients with rheumatoid arthritis. J. Rheumatol. 16, 15–19.PubMedGoogle Scholar
  12. 12.
    Gladstone, I. M. and Levine, R. L. (1994) Oxidation of proteins in neonatal lungs. Pediatrics 93, 764–768.PubMedGoogle Scholar
  13. 13.
    Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E. R., and Mizuno, Y. (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 93, 2696–2701.PubMedCrossRefGoogle Scholar
  14. 14.
    Uchida, K., Toyokumi, S., Kishikawa, S., Oda, H., Hiaia, H., and Stadtman, E. R. (1994) Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 33, 12,487–12,347.PubMedCrossRefGoogle Scholar
  15. 15.
    Butterfield, D. A., Howard, B. J., Yatin, S., Allen, K. L., and Carney, J. M. (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proc. Nat. Acad. Sci. USA 94, 674–678.PubMedCrossRefGoogle Scholar
  16. 16.
    Berlett, B. A. and Stadtman, E. R., (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20,313–20,316.PubMedCrossRefGoogle Scholar
  17. 17.
    Wondrak, G. T., Varadarajan, S., Butterfield, D. A., and Jacobson, M. K. (2000) Formation of a protein-bound pyrazinium free radical cation during glycation of histone H1. Free Radic. Biol. Med. 29, 557–567.PubMedCrossRefGoogle Scholar
  18. 18.
    Reznick, A. Z. and Packer, L. (1994) Oxidative damage to proteins: spectro-photometric method for carbonyl assay. Methods Enzymol. 233, 357–363.PubMedCrossRefGoogle Scholar
  19. 19.
    Levine, R. L., Williams, J. A., Stadtman, E. R., and Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357.PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  21. 21.
    Glenney, J. R. (1986) Antibody probing on western blots have been stained with India Ink. Anal. Biochem. 156, 315–318.PubMedCrossRefGoogle Scholar
  22. 22.
    Aksenov, M., Aksenova, M., Butterfield, D. A., and Markesbery, W. R. (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J. Neurochem. 74, 2520–2527.PubMedCrossRefGoogle Scholar
  23. 23.
    Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., and Markesbery, W. R. (2001) Protein oxidation in the Alzheimer’s disease brain. J. Neurosci. 103, 373–383.CrossRefGoogle Scholar
  24. 24.
    Molloy, M. P. (2000) Two-dimensional electrophoresis of membrane proteins using Immoblized pH Gradients. Anal. Biochem. 280, 1–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Talent, J. M., Kong, Y., and Gracy, R. W. (1998) A double-stain for total andoxidized proteins from two-dimensional fingerprints. Anal. Biochem. 263, 31–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Castegna, A., Aksenov, M., Aksenova, M., et al. (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33, 562–571.PubMedCrossRefGoogle Scholar
  27. 27.
    Castegna, A., Aksenov, M., Thongboonkerd, V., et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 82, 1524–1532.Google Scholar

Copyright information

© Humana Press Inc.,Totowa, NJ 2003

Authors and Affiliations

  • Alessandra Castegna
    • 1
  • Jennifer Drake
    • 1
  • Chava Pocernich
    • 1
  • D. Allan Butterfield
    • 1
  1. 1.Sanders-Brown Center on Aging Center of Membrane Sciences Department of ChemistryUniversity of KentuckyLexington

Personalised recommendations