Skip to main content

T-DNA Activation Tagging

  • Protocol
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

Abstract

T-DNA activation tagging is a method to generate dominant mutations in plants or plant cells by random insertion of a T-DNA carrying constitutive enhancer elements, which can cause transcriptional activation of flanking plant genes. The method consists of generating a large number of transformed plants or plant cells using a specialized T-DNA construct, followed by selection for the desired phenotype. Subsequently, the activated plant gene is rescued from selected mutant transformants for further functional analysis. Since the exact procedure depends on the plant material and the selected phenotype, this chapter describes one specific example of T-DNA activation tagging of suspension-cultured cells, including, where possible, cross-references to more general applications of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–985.

    Article  PubMed  CAS  Google Scholar 

  2. Zuo, J., Niu, Q.-W., Frugis, G., and Chua, N.-H. (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359.

    Article  PubMed  CAS  Google Scholar 

  3. Schlaman, H. R. M. and Hooykaas, P. J. J. (1997) Effectiveness of the bacterial codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J. 11, 1377–1385.

    Article  CAS  Google Scholar 

  4. Karlin-Neumann, G. A., Brusslan, J. A., and Tobin, E. M. (1991) Phytochrome control of the tms2 gene in transgenic Arabidopsis: a strategy for selecting mutants in the signal transduction pathway. Plant Cell 3, 573–582.

    Article  PubMed  CAS  Google Scholar 

  5. Weigel, D., Hoon Ahn, J., Blázquez, M. A., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  6. Goddijn, O. J. M., van der Duyn-Schouten, P. M., Schilperoort, R. A., and Hoge, J. H. C. (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plants. Plant Mol. Biol. 22, 907–912.

    Article  PubMed  CAS  Google Scholar 

  7. Sasse, F., Buchholz, M., and Berlin, J. (1983) Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures. Z. Naturforsch. 38c, 910–915.

    CAS  Google Scholar 

  8. van der Fits, L. and Memelink, J. (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297.

    Article  PubMed  Google Scholar 

  9. van der Fits, L. and Memelink, J. (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J. 25, 43–53.

    Article  PubMed  Google Scholar 

  10. van der Fits, L., Hilliou, F., and Memelink, J. (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically nontractable plant species. Transgenic Res. 10, 513–521.

    Article  PubMed  Google Scholar 

  11. Kardailsky, I., Shukla, V., Ahn, J. H., et al. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.

    Article  PubMed  CAS  Google Scholar 

  12. van der Graaff, E., den Dulk-Ras, A., Hooykaas, P. J. J., and Keller, B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127, 4971–4980.

    PubMed  Google Scholar 

  13. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2393.

    Article  PubMed  CAS  Google Scholar 

  14. Huang, S., Cerny, R. E., Bhat, D. S., and Brown, S. M. (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol. 125, 573–584.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao, Y., Christensen, S. K., Fankhauser, C., et al. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309.

    Article  PubMed  CAS  Google Scholar 

  16. Furini, A., Koncz, C., Salamini, F., and Bartels, D. (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J. 16, 3599–3608.

    Article  PubMed  CAS  Google Scholar 

  17. Zubko, E., Adams, C. J., Macháèková, I., Malbeck, J., Scollan, C., and Meyer, P. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J. 29, 797–808.

    Article  PubMed  CAS  Google Scholar 

  18. Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., et al. (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 15316–15323.

    Article  PubMed  CAS  Google Scholar 

  19. Ito, T. and Meyerowitz, E. M. (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12, 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, H., Suh, S.-S., Park, E., et al. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366–2376.

    Article  PubMed  CAS  Google Scholar 

  21. Li, J., Lease, K. A., Tax, F. E., and Walker, J. C. (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 5916–5921.

    Article  PubMed  CAS  Google Scholar 

  22. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  23. Bent, A. F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  24. Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.

    Article  PubMed  CAS  Google Scholar 

  25. Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  26. van der Fits, L., Deakin, E. A., Hoge, J. H. C., and Memelink, J. (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol. Biol. 43, 495–502.

    Article  PubMed  Google Scholar 

  27. van der Fits, L. and Memelink, J. (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol. Biol. 33, 943–946.

    Article  PubMed  Google Scholar 

  28. Chilton, M.-D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., and Nester, E. W. (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71, 3672–3676.

    Article  PubMed  CAS  Google Scholar 

  29. Linsmaier, E. M. and Skoog, F. (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127.

    Article  CAS  Google Scholar 

  30. Pasquali, G., Ouwerkerk, P. B. F., and Memelink, J. (1994) Versatile transformation vectors to assay the promoter activity of DNA elements in plants. Gene 149, 373–374.

    Article  PubMed  CAS  Google Scholar 

  31. Benfey, P. N. and Chua, N.-H. (1990) The cauliflower mosic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966.

    Article  PubMed  CAS  Google Scholar 

  32. Memelink, J., Swords, K. M. M., Staehelin, L. A., and Hoge, J. H. C. (1994) Southern, Northern and Western blot analysis, in Plant Molecular Biology Manual (Gelvin, S. B. and Schilperoort, R. A., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. F1–F23.

    Google Scholar 

  33. Liu, Y.-G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  34. Bilang, R., Iida, S., Peterhans, A., Potrykus, I., and Paszkowski, J. (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100, 247–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Memelink, J. (2003). T-DNA Activation Tagging. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:345

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:345

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics