Skip to main content

Maintaining Collections of Mutants for Plant Functional Genomics

  • Protocol

Part of the Methods in Molecular Biology™ book series (MIMB,volume 236)

Abstract

As the plant genomics era progresses and post-genomic functional research rapidly expands, varied genetic resources of unprecedented power and scope are being developed. Partially by the mandate of public funding, these resources are being shared via stock centers and private laboratories. The successful initiation of any new research requires that advantage be taken of these stocks. Information on most plant genomic resources can be obtained through simple yet powerful Web searches, and ordering mechanisms are linked to the information. Hence, locating and obtaining materials is rapid and simple. Currently, available genomic resources are described, and references, links for Web data, and ordering information are also included.

Key Words

  • T-DNA
  • transposon
  • tagging
  • reverse genetics
  • flanking sequence

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-413-1:311
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-413-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Feldmann, K. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9.

    CrossRef  CAS  Google Scholar 

  2. Feldmann, K. A., Marks, M. D., Christianson, M. L., and Quatrano, R. S. (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagensis. Science 243, 1351–1354.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. 316, 1194–1199.

    CAS  Google Scholar 

  4. Bouchez, D., Camilleri, C., and Caboche M. (1993) A binary vector based on Basta resistance for in planta transformation of Arabidopsis thaliana. C.R. Acad. Sci. 316, 1188–1193.

    CAS  Google Scholar 

  5. Rojas-Pierce, M. and Springer, P. (2003) Gene-and enhancer traps for gene discovery. Ch. 14, this volume.

    Google Scholar 

  6. Sundaresan, V., Springer, P., Volpe, T., et al. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Weigel, D., Ahn, J. H., Blazquez, M. A., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1014.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Alonso, J. and Stepanova, A. (2003) T-DNA mutagenesis in Arabidopsis. Ch. 11, this volume.

    Google Scholar 

  9. Memelink, J. (2003) T-DNA activation tagging. Ch. 21, this volume.

    Google Scholar 

  10. Koncz, C., Nemeth, G. P., Rédei, G. P., and Schell, J. (1992) T-DNA-mediated insertional mutagenesis. Plant Mol. Biol. 20, 963–969.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Krysan, P. J., Young, J. C., Tax, F., and Sussman, M. R. (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA 93, 8145–8150.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Krysan, P. J., Young, J. C., and Sussman, M. R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J. K. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949.

    PubMed  CrossRef  CAS  Google Scholar 

  14. LeClere, S. and Bartel, B. (2001) A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol. Biol. 46, 695–703.

    PubMed  CrossRef  CAS  Google Scholar 

  15. McKinney, E. C., Ali, N., Traut, A., et al. (1995) Sequence based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant J. 8, 613–622.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Meissner, R. C., Jin H., Cominelli, E., et al. (1999) Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 10, 1827–1840.

    CrossRef  Google Scholar 

  17. Parinov, S., Sevugan, M., Ye, D., Yang, W., Kumaran, M., and Sundaresan, V. (1999) Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11, 2263–2270.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Osborne, B. I., Wirtz, U., and Baker, B. (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J. 7, 687–701.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Fedoroff, N. V. and Smith, D. L. (1993) A versatile system for detecting transposition in Arabidopsis. Plant J. 3, 273–289.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Smith, D., Yanai, Y., Liu, Y. G., et al. (1996) Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J. 10, 721–732.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Colbert, T., Till, B. J., Tompa, R., et al. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Till, B., Trenton, C., Tompa, R., et al. (2003) High-throughput TILLING for Functional Genomics. Ch. 13, this volume.

    Google Scholar 

  23. McClintock, B. (1947) Cytogenetic studies of maize and Neurospora. Carnegie Inst. Wash. Yearbook 46, 146–152.

    Google Scholar 

  24. McClintock, B. (1950) The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36, 344–355.

    PubMed  CrossRef  CAS  Google Scholar 

  25. McClintock, B. (1949) Mutable loci in maize. Carnegie Inst. Wash. Yearbook 48, 142–154.

    Google Scholar 

  26. Emerson, R. A. (1914) The inheritance of a recurring somatic variation in variegated ears of maize. Am. Nat. 48, 87–115.

    CrossRef  Google Scholar 

  27. Brink, R. A. and Nilan, R. A. (1952) The relation between light variegated and medium variegated pericarp in maize. Genetics 37, 519–544.

    PubMed  CAS  Google Scholar 

  28. Rhoades, M. M. (1935) A new aleurone color in maize. Am. Nat. 69, 74–75.

    Google Scholar 

  29. Rhoades, M. M. (1938) Effect of the Dt gene on the mutability of the a1 allele in maize. Genetics 23, 377–397.

    PubMed  CAS  Google Scholar 

  30. Peterson, P. A. (1953) A mutable pale green locus in maize. Genetics 38, 682–683.

    Google Scholar 

  31. McClintock, B. (1951) Mutable loci in maize. Carnegie Inst. Wash. Yearbook 50, 174–181.

    Google Scholar 

  32. Robertson, D. S. (1978) Characterization of a mutator system in maize. Mutat. Res. 51, 21–28.

    Google Scholar 

  33. Schnable, P. S. and Peterson, P. A. (1986) Distribution of genetically active Cy transposable elements among diverse maize lines. Maydica 31, 59–82.

    Google Scholar 

  34. Salamini, F. (1981) Controlling elements at the opaque-2 locus of maize: their involvement in the origin of spontaneous mutation. Cold Spring Harbor Symp. Quant. Biol. 45, 467–476.

    PubMed  CAS  Google Scholar 

  35. Gonella, J. A. and Peterson, P. A. (1977) Controlling elements in a tribal maize from Colombia: Fcu, a two-unit system. Genetics 85, 629–645.

    PubMed  CAS  Google Scholar 

  36. Rhoades, M. M. and Dempsey, E. (1982) The induction of mutable systems in plants with the high-loss mechanism. Maize Newsletter 56, 21–26.

    Google Scholar 

  37. Friedemann, P. and Peterson, P. A. (1982) The Uq controlling-element system in maize. Mol. Gen. Genet. 187, 19–29.

    CrossRef  CAS  Google Scholar 

  38. Wessler, S., Bureau, T. E., and White, S. E. (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821.

    PubMed  CrossRef  CAS  Google Scholar 

  39. SanMiguel, P., Tikhonov, A. P., Jin, Y.-K., et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Kumar, A. and Bennetzen, J. L. (1999) Plant retrotransposons. Ann. Rev. Genet. 33, 479–532.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Greenblatt, I. M. and Brink, R. A. (1962) Twin mutations in medium variegated pericarp maize. Genetics 47, 489–501.

    PubMed  CAS  Google Scholar 

  42. Van Schaik, N. and Brink, R. A. (1959) Transpositions of modulator, a component of the variegated pericarp allele in maize. Genetics 44, 725–738.

    PubMed  Google Scholar 

  43. Bennetzen, J. L. (1996) The mutator transposable element system of maize, in Transposable Elements (Saedler, H. and Gierl, A., eds.), Springer-Verlag, New York, pp. 195–229.

    Google Scholar 

  44. Chandler, V. L. and Hardeman, K. J. (1992) The Mu elements of Zea mays. Adv. Genet. 30, 77–122.

    PubMed  CrossRef  CAS  Google Scholar 

  45. Walbot, V. (1991) The Mutator transposable element family of maize, in Current Topics in Genetic Engineering, Vol. 13 (Setlow, J. K., ed.), Plenum Press, New York, pp. 1–37.

    Google Scholar 

  46. Dooner, H. K., Belachew, A., Burgess, D., Harding, S., Ralston, M., and Ralston, E. (1994) Distribution of unlinked receptor sites for transposed Ac elements from the bz-m2(Ac) allele in maize. Genetics 136, 261–279.

    PubMed  CAS  Google Scholar 

  47. Brutnell, T. and Conrad, L. (2003) Transposon Tagging Using Activator (Ac) in Maize. Ch. 10, this volume.

    Google Scholar 

  48. Raizada, M. (2003) RescueMu Protocol for Maize Functional Genomics. Ch. 3, this volume.

    Google Scholar 

  49. Raizada, M., Nan, G.-L., and Walbot, V. (2001) Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13, 1587–1608.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Bensen, R. J., Johal, G. S., Crane, V. C., et al. (1995) Cloning and characterization of the maize anl gene. Plant Cell 7, 75–84.

    PubMed  CrossRef  CAS  Google Scholar 

  51. Meeley, B. and Briggs, S. P. (1995) Reverse genetics for maize. Maize Newsletter 69, 67–82.

    Google Scholar 

  52. FAO Food Balance Sheet (1996) United Nations Food and Agriculture Organization. Rome, Italy.

    Google Scholar 

  53. Goff, S. A., Ricke D., Lan, T.-H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    PubMed  CrossRef  CAS  Google Scholar 

  54. Yu, J., Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    PubMed  CrossRef  CAS  Google Scholar 

  55. Whitkus, R., Doebley, J., and Lee, M. (1992) Comparative genome mapping of sorghum and maize. Genetics 132, 119–1130.

    Google Scholar 

  56. Melake Berhan A., Hulbert S. H., Butler L. G., and Bennetzen J. L. (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor. Appl. Genet. 86, 598–604.

    Google Scholar 

  57. Grivet, L., D’Hont, A., Dufour, P., Hamon, P., Roques, D., and Glaszmann, J. C. (1994) Comparative mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73, 500–508.

    CrossRef  CAS  Google Scholar 

  58. Devos, K. M., Beals, J., Nagamura, Y., and Sasaki, T. (1999) Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Res. 9, 825–829.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Naranjo, T., Roca, P., Goicoechea, P. G., and Giraldez, R. (1987) Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882.

    Google Scholar 

  60. Ahn, S. and Tanksley, S. D. (1993) Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90, 7980–7984.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Ahn, S., Anderson, J. A., Sorrells, M. E., and Tanksley, S. D. (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet. 241, 483–490.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Wilson, W. A., Harrington, S. E., Woodman, W. L., Lee, M., Sorrells, M. E., and McCouch, S. (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids Genetics 153, 453–473.

    PubMed  CAS  Google Scholar 

  63. Van Deynze, A., Nelson, J. C., O’Donoughue, L. S., et al. (1995) Comparative mapping in grasses. Oat relationships. Mol. Gen. Genet. 249, 349–356.

    PubMed  CrossRef  Google Scholar 

  64. Kurata, N., Nagamura, Y., Yamamoto, K., et al. (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat. Genet. 8, 365–372.

    PubMed  CrossRef  CAS  Google Scholar 

  65. Devos, K. M., Chao, S., Li, Q. Y., Simonetti, M. C., and Gale, M. (1994) Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics 138, 1287–1292.

    PubMed  CAS  Google Scholar 

  66. Dunford, R. P., Kurata, N., Laurie, D. A., Money, T. A., Minobe, Y., and Moore G. (1995) Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 23, 2724–2728.

    PubMed  CrossRef  CAS  Google Scholar 

  67. Gale, M. D. and Devos, K. M. (1998) Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974.

    PubMed  CrossRef  CAS  Google Scholar 

  68. Jeon, J. and An, G. (2001) Gene tagging in rice: a high throughput system for functional genomics. Plant Sci. 161, 211–219.

    PubMed  CrossRef  CAS  Google Scholar 

  69. Terada, R., Urawa, H., Yoshihsige, I., Thugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat. Biotechnol. 20, 1030–1034.

    PubMed  CrossRef  CAS  Google Scholar 

  70. Ronald, P. and Leung, H. (2002) The rice genome. The most precious things are not jade and pearls. Science 296, 58–59.

    PubMed  CrossRef  CAS  Google Scholar 

  71. Leung, H., Hettel, G. P., and Cantrell, R. P. (2002) International Rice Research Institute: roles and challenges as we enter the genomics era. Trends Plant Sci. 7, 139–142.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Scholl, R., Sachs, M.M., Ware, D. (2003). Maintaining Collections of Mutants for Plant Functional Genomics. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:311

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols