Skip to main content

Gene and Enhancer Traps for Gene Discovery

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

Abstract

Gene traps and enhancer traps provide a valuable tool for gene discovery. With this system, genes can be identified based solely on the expression pattern of an inserted reporter gene. The use of a reporter gene, such as β-glucuoronidase (GUS), provides a very sensitive assay for the identification of tissue- and cell-type specific expression patterns. In this chapter, protocols for examining and documenting GUS reporter gene activity in individual lines are described. Methods for the amplification of sequences flanking transposant insertions and subsequent molecular and genetic characterization of individual insertions are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Casadaban, M. J. and Cohen, S. N. (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. USA 76, 4530–4533.

    Article  PubMed  CAS  Google Scholar 

  2. Bellen, H. J. (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell 11, 2271–2281.

    Article  PubMed  CAS  Google Scholar 

  3. Springer, P. S. (2000) Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  4. Stanford, W. L., Cohn, J. B., and Cordes, S. P. (2001) Gene trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768.

    Article  PubMed  CAS  Google Scholar 

  5. Chin, H. G., Choe, M. S., Lee, S. H., et al. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 615–623.

    Article  PubMed  CAS  Google Scholar 

  6. Martirani, L., Stiller, J., Mirabella, R., et al. (1999) T-DNA tagging of nodulation-and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol. Plant Microbe Interact. 12, 275–284.

    Article  CAS  Google Scholar 

  7. Nishiyama, T., Hiwatashi, Y., Sakakibara, K., Kato, M., and Hasebe, M. (2000) Tagged mutagenesis and gene trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res. 7, 9–17.

    Article  PubMed  CAS  Google Scholar 

  8. Jeon, J. S., Lee, S., Jung, K. H., et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    Article  PubMed  CAS  Google Scholar 

  9. Martienssen, R. A. and Springer, P. S. (2000) Enhancer and gene trap transposon mutagenesis in Arabidopsis, in (http://www.arabidopsis.org/info/springer.html).

  10. Weigel, D. and Glazebrook, J. (2002) Arabidopsis: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  11. Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10, 479–489.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, Y.-G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  13. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  14. Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233.

    Article  PubMed  CAS  Google Scholar 

  15. Martienssen, R. A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95, 2021–2026.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. CSH Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  17. Ride, J. P., Davies, E. M., Franklin, F. C., and Marshall, D. F. (1999) Analysis of Arabidopsis genome sequence reveals a large new gene family in plants. Plant Mol. Biol. 39, 927–932.

    Article  PubMed  CAS  Google Scholar 

  18. Cock, J. M. and McCormick, S. (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol. 126, 939–942.

    Article  PubMed  CAS  Google Scholar 

  19. MacIntosh, G. C., Wilkerson, C., and Green, P. J. (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol. 127, 765–776.

    Article  PubMed  CAS  Google Scholar 

  20. Llave, C., Kasschau, K. D., Rector, M. A., and Carrington, J. C. (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619.

    Article  PubMed  CAS  Google Scholar 

  21. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002) MicroRNAs in plants. Genes Dev. 16, 1616–1626.

    Article  PubMed  CAS  Google Scholar 

  22. Seki, M., Narusaka, M., Kamiya, A., et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296, 141–145.

    Article  PubMed  Google Scholar 

  23. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  24. Sieburth, L. E. and Meyerowitz, E. M. (1997) Molecular dissection of the AGA-MOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9, 355–365.

    Article  PubMed  CAS  Google Scholar 

  25. Brand, U., Grünewald, M., Hobe, M. and Simon, R. (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 129, 565–575.

    Article  PubMed  CAS  Google Scholar 

  26. Lohmann, J. U., Hong, R. L., Hobe, M., et al. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803.

    Article  PubMed  CAS  Google Scholar 

  27. Xiang, C, Han, P., Lutziger, I., Wang, K., and Oliver, D. J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40, 711–717.

    Article  PubMed  CAS  Google Scholar 

  28. Nagel, R., Elliott, A., Masel, A., Birch, R. G., and Manners, J. M. (1990) Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiol. Lett. 67, 325–328.

    Article  CAS  Google Scholar 

  29. Clough, S. J. and Bent, A. J. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  30. Baxter-Burrell, A., Yang, Z., Springer, P. S., and Bailey-Serres, J. (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296, 2026–2028.

    Article  PubMed  CAS  Google Scholar 

  31. Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.

    Article  CAS  Google Scholar 

  32. Bancroft, I., Jones, J. D. G., and Dean, C. (1993) Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell 5, 631–638.

    Article  PubMed  CAS  Google Scholar 

  33. Sundaresan, V., Springer, P., Volpe, T., et al. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  34. Benfey, P. N., Ren, L., and Chua, N. H. (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195–2202.

    PubMed  CAS  Google Scholar 

  35. Cocherel, S., Perez, P., Degroote, F., Genestier, S., and Picard, G (1996) A promoter identified in the 3′ end of the Ac transposon can be activated by cis-acting elements in transgenic Arabidopsis lines. Plant Mol. Biol. 30, 539–551.

    Article  PubMed  CAS  Google Scholar 

  36. Fobert, P. R., Labbé, H., Cosmopoulos, J., et al. (1994) T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J. 6, 567–577.

    Article  PubMed  CAS  Google Scholar 

  37. Foster, E., Hattori, J., Labbé, H., et al. (1999) A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol. Biol. 41, 45–55.

    Article  PubMed  CAS  Google Scholar 

  38. Plesch, G, Kamann, E., and Mueller-Roeber, B. (2000) Cloning of regulatory sequences mediating guard-cell-specific gene expression. Gene 249, 83–89.

    Article  PubMed  CAS  Google Scholar 

  39. Mollier, P., Hoffmann, B., Orsel, M., and Pelletier, G (2000) Tagging of a cryptic promoter that confers root-specific gus expression in Arabidopsis thaliana. Plant Cell Reports 19, 1076–1083.

    Article  CAS  Google Scholar 

  40. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  41. Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W. J. (1999) Phloem longdistance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419.

    PubMed  CAS  Google Scholar 

  42. Koltai, H. and Bird, D. M. (2000) High throughput cellular localization of specific plant mRNAs by liquid-phase in situ reverse transcription-polymerase chain reaction of tissue sections. Plant Physiol. 123, 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  43. Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  44. Coupland, G., Plum, C., Chatterjee, S., Post, A., and Starlinger, P. (1989) Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86, 9385–9388.

    Article  PubMed  CAS  Google Scholar 

  45. Baker, B., Schell, J., Lörz, H., and Fedoroff, N. (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc. Natl. Acad. Sci. USA 83, 4844–4848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rojas-Pierce, M., Springer, P.S. (2003). Gene and Enhancer Traps for Gene Discovery. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:221

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:221

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics