Skip to main content

Exploring the Potential of Plant RNase P as a Functional Genomics Tool

  • Protocol
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 236))

  • 4154 Accesses

Abstract

As we trek into the uncharted territories of the genomic era, there is an urgency for the development of approaches for assigning functions to the multitude of uncharacterized genes. Although currently available knock-out methodologies could be used for uncovering the function of newly discovered genes, the mixed outcomes in terms of the success of these approaches in down-regulating gene expression necessitate the development of new functional genomics tools. This chapter describes in detail the experimental method for targeted mRNA degradation inside plant cells by enticing the endogenous and ubiquitous RNase P into recognition of specific mRNAs as non-natural substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martienssen, R. A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95, 2021–2026.

    Article  PubMed  CAS  Google Scholar 

  2. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  3. van der Kol, A. R., Lenting, P. E., Veenstra, J., et al. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333, 866–869.

    Article  Google Scholar 

  4. Tanner, N. K. (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol. Rev. 23, 257–275.

    Article  PubMed  CAS  Google Scholar 

  5. Storz, G. (2002) An expanding universe of noncoding RNAs. Science 296, 1260–1262.

    Article  PubMed  CAS  Google Scholar 

  6. Merlo, A. O., Cowen, N., Delate, T., et al. (1998) Ribozymes targeted to stearoyl-ACP Δ9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Plant Cell 10, 1603–1621.

    Article  PubMed  CAS  Google Scholar 

  7. Chuang, C.-F. and Meyerowitz, E. M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4985–4990.

    Article  PubMed  CAS  Google Scholar 

  8. Gopalan, V., Vioque, A., and Altman, S. (2002) RNase P: variations and uses. J. Biol. Chem. 277, 6759–6762.

    Article  PubMed  CAS  Google Scholar 

  9. Hall, T. A. and Brown, J. W. (2001) The ribonuclease P family. Methods Enzymol. 341, 56–77.

    Article  PubMed  CAS  Google Scholar 

  10. Xiao, S., Scott, F., Fierke, C. A., and Engelke, D. R. (2002) Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu. Rev. Biochem. 71, 165–189.

    Article  PubMed  CAS  Google Scholar 

  11. Forster, A. C. and Altman, S. (1990) External guide sequence for an RNA enzyme. Science 249, 783–786.

    Article  PubMed  CAS  Google Scholar 

  12. Guerrier-Takada, C. and Altman, S. (2000) Inactivation of gene expression using ribonuclease P and external guide sequences. Methods Enzymol. 313, 442–456.

    Article  PubMed  CAS  Google Scholar 

  13. Plehn-Dujowich, D. and Altman, S. (1998) Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P. Proc. Natl. Acad. Sci. USA 95, 7327–7332.

    Article  PubMed  CAS  Google Scholar 

  14. Yen, L., Gonzalez-Zulueta, M., Feldman, A., et al. (2001) Reduction of functional N-methyl-D-aspartate receptors in neurons by RNase P-mediated cleavage of the NR1 mRNA. J. Neurochem. 76,1386–1394.

    Article  PubMed  CAS  Google Scholar 

  15. Dunn, W., Trang, P., Khan, U., Zhu, J., and Liu, F. (2001) RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc. Natl. Acad. Sci. USA 98, 14831–14836.

    Article  PubMed  CAS  Google Scholar 

  16. Ma, M., Benimetskaya, L., Lebedeva, I., Dignam, J., Takle, G., and Stein, C. A. (2000) Intracellular mRNA cleavage induced through activation of RNase P by nuclease-resistant external guide sequences. Nat. Biotechnol. 18, 58–61.

    Article  PubMed  CAS  Google Scholar 

  17. Cobaleda, C. and Sachez-Garcia, I. (2001) RNase P: from biological function to biotechnological applications. Trends Biotechnol. 19, 406–411.

    Article  PubMed  CAS  Google Scholar 

  18. Raj, M. L. S., Pulukkunat, D. K., Reckard, J. F., Thomas, G., and Gopalan, V. (2001) Cleavage of bipartite substrates by rice and maize ribonuclease P. Application to degradation of target mRNAs in plants. Plant Physiol. 125, 1187–1190.

    Article  PubMed  CAS  Google Scholar 

  19. Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148.

    Article  PubMed  CAS  Google Scholar 

  20. Moine, H., Ehresmann, B., Ehresmann, C., and Romby, P. (1997) Probing RNA structure and function in solution, in RNA Structure and Function (Simons, R. W. and Grunberg-Manago, M., eds.), CSH Laboratory Press, Cold Spring Harbor, NY, pp. 77–116.

    Google Scholar 

  21. Allawi, H. T., Dong, F., Ip, H. S., Neri, B. P., and Lyamichev, V. I. (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7, 314–327.

    Article  PubMed  CAS  Google Scholar 

  22. Pan, W., Devlin, H. F., Kelly, C., Isom, H. C., and Clawson, G. A. (2001) A selection system for identifying accessible sites in target RNAs. RNA 7, 610–620.

    Article  PubMed  CAS  Google Scholar 

  23. Amarzguioui, M., Brede, G., Babaie, E., Grotli, M., Sproat, B., and Prydz, H. (2000) Secondary structure prediction and in vitro accessibility of mRNA as tools in the selection of target sites for ribozymes. Nucleic Acids Res. 28, 4113–4124.

    Article  PubMed  CAS  Google Scholar 

  24. Stiffler, M. A. (2002) Substrate recognition by Zea mays RNase P: implications for an RNase P-based functional genomics approach in plants. B.S. (Honors) Thesis, The Ohio State University, Columbus, OH.

    Google Scholar 

  25. Yuan, Y. and Altman, S. (1995) Substrate recognition by human RNase P: identification of small, model substrates for the enzyme. EMBO J. 14, 159–168.

    PubMed  CAS  Google Scholar 

  26. Waibel, F. and Filipowicz, W. (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res. 18, 3451–3458.

    Article  PubMed  CAS  Google Scholar 

  27. Marshallsay, C., Kiss, T., and Filipowicz, W. (1990) Amplification of plant U3 and U6 snRNA gene sequences using primers specific for an upstream promoter element and conserved intragenic regions. Nucleic Acids Res. 18, 3459–3466.

    Article  PubMed  CAS  Google Scholar 

  28. Heard, D. J., Filipowicz, W., Marques, J. P., Palme, K., and Gualberto, J. M. (1995) An upstream U-SnRNA gene-like promoter is required for the transcription of the Arabidopsis thaliana 7SL RNA gene. Nucleic Acids Res. 23, 1970.

    Article  PubMed  CAS  Google Scholar 

  29. Connelly, S. and Filipowicz, W. (1993) Activity of chimeric U snRNA/mRNA genes in transfected protoplasts of Nicotiana plumbaginifolia: U SnRNA 3′-end formation and transcription initiation can occur independently in plants. Mol. Cell. Biol. 13, 6403–6415.

    PubMed  CAS  Google Scholar 

  30. Connelly, S., Marshallsay, C., Leader, D., Brown, J. W., and Filipowicz, W. (1994) Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts. Mol. Cell. Biol. 14, 5910–5919.

    PubMed  CAS  Google Scholar 

  31. Bertrand, E., Houser-Scott, F., Kendall, A., Singer, R. H., and Engelke, D. R. (1998) Nucleolar localization of early tRNA processing. Genes Dev. 12, 2463–2468.

    Article  PubMed  CAS  Google Scholar 

  32. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai, H.-Y., Lai, L. B., and Gopalan, V. (2002) A modified pBluescript-based vector for facile cloning and transcription of RNAs. Anal. Biochem. 303, 214–217.

    Article  PubMed  CAS  Google Scholar 

  34. Vioque, A., Arnez, J., and Altman, S. (1988) Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli. J. Mol. Biol. 202, 835–848.

    Article  PubMed  CAS  Google Scholar 

  35. Hartmann, R. K., Krupp, G., and Hardt, W.-D. (1995) Towards a new concept of gene inactivation: specific RNA cleavage by endogenous RNase P. Annu. Rev. Biotechnol. 1, 215–265.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pulukkunat, D.K., Raj, M.L.S., Pattanayak, D., Lai, L.B., Gopalan, V. (2003). Exploring the Potential of Plant RNase P as a Functional Genomics Tool. In: Grotewold, E. (eds) Plant Functional Genomics. Methods in Molecular Biology™, vol 236. Humana Press. https://doi.org/10.1385/1-59259-413-1:295

Download citation

  • DOI: https://doi.org/10.1385/1-59259-413-1:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-145-5

  • Online ISBN: 978-1-59259-413-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics