Skip to main content

A Chemical Genetic Approach for the Identification of Direct Substrates of Protein Kinases

  • Protocol
Protein Kinase C Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 233))

Abstract

Protein kinases form one of the largest superfamily of enzymes that play pivotal roles in controlling almost every signaling pathway (1). Deregulated kinase activity thus leads to multiple diseases, including various forms of cancer (2), inflammatory and autoimmune diseases (3), neurodegenerative diseases (4,5), diabetes (6), and HIV infection (7). Signaling networks regulated by kinases are complex and highly interconnected. Additionally, many kinases display overlapping substrate specificities in vitro and can functionally compensate for each other in single gene knockout experiments (8,9). Therefore, unraveling of these pathways to dissect the role of any particular kinase (normal or oncogenic) has remained one of the major challenges ever since the first kinase was purified. Ideally, if the substrate of each kinase could be identified in a cell, it would provide a baseline for understanding the complex cellular functions and consequently also provide a blueprint for novel targets for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter, T. (2000) Signaling-2000 and Beyond. Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  2. Sawyers, C. L. (2002) Rational therapeutic intervention in cancer: kinases as drug targets. Curr. Opin. Genet. Dev. 12, 111–115.

    Article  PubMed  CAS  Google Scholar 

  3. Lewis, A. J. and Manning, A. M. (1999) New targets for anti-inflammatory drugs. Curr. Opin. Chem. Biol. 3, 489–494.

    Article  PubMed  CAS  Google Scholar 

  4. Maccioni, R. B., Munoz, J. P., and Barbeito, L. (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch. Med. Res. 32, 367–381.

    Article  PubMed  CAS  Google Scholar 

  5. Wagey, R. T. and Krieger, C. (1998) Abnormalities of protein kinases in neurode-generative diseases. Prog. Drug Res. 51, 133–183

    PubMed  CAS  Google Scholar 

  6. Jiang, G. and Zhang, B. B. (2002) Pi 3-kinase and its up-and down-stream modulators as potential targets for the treatment of type II diabetes. Front. Biosci. 7, d903–d907.

    Article  PubMed  CAS  Google Scholar 

  7. Arasteh, K. and Hannah, A. (2000) The role of vascular endothelial growth factor (VEGF) in AIDS-related Kaposi’s sarcoma. Oncologist 5(Suppl. 1), 28–31.

    Article  PubMed  CAS  Google Scholar 

  8. Ghaffari, S., Wu, H., Gerlach, M., Han, Y., Lodish, H. F., and Daley, G. Q. (1999) BCR-ABL and v-Src tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc. Natl. Acad. Sci. USA 96, 13,186–13,190.

    Article  PubMed  CAS  Google Scholar 

  9. Ihle, J. N. (2000) The challenges of translating knockout phenotypes into gene function. Cell 102, 31–134.

    Article  Google Scholar 

  10. Songyang, Z. and Cantley, L. C. (1998) The use of peptide library for the determination of kinase peptide substrates. Methods Mol. Biol. 87, 87–98.

    PubMed  CAS  Google Scholar 

  11. Fukunaga, R. and Hunter, T. (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933.

    Article  PubMed  CAS  Google Scholar 

  12. Lock, P., Abram, C. L., Gibson, T., and Courtneidge, S. A. (1998) A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J. 17, 4346–4357.

    Article  PubMed  CAS  Google Scholar 

  13. Stukenberg, P. T., Lustig, K. D., McGarry, T. J., King, R. W., Kuang, J., and Kirschner, M. W. (1997) Systematic identification of mitotic phosphoproteins. Curr. Biol. 7, 338–348.

    Article  PubMed  CAS  Google Scholar 

  14. Deng, S. J., Liu, W., Simmons, C. A., Moore, J. T., and Tian, G. (2001) Identifying substrates for endothelium-specific Tie-2 receptor tyrosine kinase from phage-displayed peptide libraries for high throughput screening. Comb. Chem. High Throughput Screen 4, 525–533.

    PubMed  CAS  Google Scholar 

  15. Zhu, H., Klemic, J. F., Chang, S., Bertone, P., Casamayor, A., Klemic, K. G., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  17. Pawson, T. and Nash, P. (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047.

    PubMed  CAS  Google Scholar 

  18. Perez, O. D. and Nolan, G. P. (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20, 155–162.

    PubMed  CAS  Google Scholar 

  19. Neet, K. and Hunter, T. (1995) The nonreceptor protein-tyrosine kinase CSK complexes directly with the GTPase-activating protein-associated p62 protein in cells expressing v-Src or activated c-Src. Mol. Cell Biol. 15, 4908–4920.

    PubMed  CAS  Google Scholar 

  20. Wu, L. W., Mayo, L. D., Dunbar, J. D., Kessler, K. M., Baerwald, M. R., Jaffe, E. A., et al. (2000) Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem. 275, 5096–5103.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis, T. S., Hunt, J. B., Aveline, L. D., Jonscher, K. R., Louie, D. F., Yeh, J. M., et al. (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 1343–1354.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshimura, Y., Shinkawa, T., Taoka, M., Kobayashi, K., Isobe, T., and Yamauchi, T. (2002) Identification of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry. Biochem. Biophys. Res. Commun. 290, 948–954.

    Article  PubMed  CAS  Google Scholar 

  23. Knebel, A., Morrice, N., and Cohen, P. (2001) A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO. J. 20, 4360–4369.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou, S. and Cantley, L. C. (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem. Sci. 20, 470–475.

    Article  Google Scholar 

  25. Shah, K., Liu, Y., Deirmengian, C., and Shokat, K. M. (1997) Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K. M. (1998) Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101.

    Article  PubMed  CAS  Google Scholar 

  27. Liu, Y., Shah, K., Yang, F., Witucki, L., and Shokat, K. M. (1998) A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src. Bioorg. Med. Chem. 6, 1219–1226.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, Y., Bishop, A., Witucki, L., Kraybill, B., Shimizu, E., Tsien, J., et al. (1999) Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678.

    Article  PubMed  CAS  Google Scholar 

  29. Adams, J., Huang, P., and Patrick, D. (2002) A strategy for the design of multiplex inhibitors for kinase-mediated signalling in angiogenesis. Curr. Opin. Chem. Biol. 6, 486–492.

    Article  PubMed  CAS  Google Scholar 

  30. Weiss, E. L., Bishop, A. C., Shokat, K. M., and Drubin, D. G. (2000) Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nat. Cell Biol. 2, 677–685.

    Article  PubMed  CAS  Google Scholar 

  31. Habelhah, H., Shah, K., Huang, L., Burlingame, A. L., Shokat, K. M., and Ronai, Z. (2001) Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 276, 18,090–18,095.

    Article  PubMed  CAS  Google Scholar 

  32. Witucki, L. A., Huang, X., Shah, K., Liu, Y., Kyin, S., Eck, M. J., et al. (2002) Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chem. Biol. 9, 25–33.

    Article  PubMed  CAS  Google Scholar 

  33. Polson, A. G., Huang, L., Lukac, D. M., Blethrow, J. D., Morgan, D. O., Burlin-game, A. L., et al. (2001) Kaposi’s sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases. J. Virol. 75, 3175–3184.

    Article  PubMed  CAS  Google Scholar 

  34. Shah, K. and Shokat, K. M. (2002) A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 9, 35–47.

    Article  PubMed  CAS  Google Scholar 

  35. Scott, M. P. and Miller, W. T. (2000) A peptide model system for processive phosphorylation by Src family kinases. Biochemistry 39, 14,531–14,537.

    Article  PubMed  CAS  Google Scholar 

  36. Kraybill, B. C., Elkin, L. L., Blethrow, J. D., Morgan, D. O., and Shokat, K. M. (2002) Inhibitor Scaffolds as New Allele Specific Kinase Substrates. J. Am. Chem. Soc. 124, 12,118–12,128.

    Article  PubMed  CAS  Google Scholar 

  37. Bishop, A. C., Shah, K., Liu, Y., Witucki, L., Kung, C., and Shokat, K. M. (1998) Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266.

    Article  PubMed  CAS  Google Scholar 

  38. Bishop, A. C., Buzko, O., and Shokat, K. M. (2001) Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172.

    Article  PubMed  CAS  Google Scholar 

  39. Bishop, A. C., Ubersax, J. A., Petsch, D. T., Matheos, D. P., Gray, N. S., Blethrow, J., et al. (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401.

    Article  PubMed  CAS  Google Scholar 

  40. Carroll, A. S., Bishop, A. C., DeRisi, J. L., Shokat, K. M., and O’Shea, E. K. (2001) Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12,578–12,583.

    Article  PubMed  CAS  Google Scholar 

  41. Yang, F., Liu, Y., Bixby, S. D., Friedman, J. D., and Shokat, K. M. (1999) Highly efficient green fluorescent protein-based kinase substrates. Anal. Biochem. 266, 167–173.

    Article  PubMed  Google Scholar 

  42. Buzko, O. V. and Shokat, K. M. (2002) A Kinase Sequence database∶sequence alignments and family assignment. Bioinformatics 18, 1274–1275.

    Article  PubMed  CAS  Google Scholar 

  43. Polte, T. R. and Hanks, S. K. (1997) Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J. Biol. Chem. 272, 5501–5509.

    Article  PubMed  CAS  Google Scholar 

  44. Hecht, S. M. and Kozarich, J. W. (1973) A chemical synthesis of adenosine 5′-(gamma-32P)triphosphate. Biochim. Biophys. Acta 331, 307–309.

    PubMed  CAS  Google Scholar 

  45. DeClue, J. E. and Martin, G. S. (1989) Linker insertion-deletion mutagenesis of the v-Src gene: isolation of host-and temperature-dependent mutants. J. Virol. 63, 542–554.

    PubMed  CAS  Google Scholar 

  46. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Shah, K., Shokat, K.M. (2003). A Chemical Genetic Approach for the Identification of Direct Substrates of Protein Kinases. In: Newton, A.C. (eds) Protein Kinase C Protocols. Methods in Molecular Biology™, vol 233. Humana Press. https://doi.org/10.1385/1-59259-397-6:253

Download citation

  • DOI: https://doi.org/10.1385/1-59259-397-6:253

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-068-7

  • Online ISBN: 978-1-59259-397-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics