Skip to main content

Autogene Selections

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

Abstract

The evolution of proteins is more difficult than the evolution of nucleic acids both in principle and in practice. While nucleic acid sequence space has a dimensionality of 4n, where n is the size of the nucleic acid pool (i.e., G, C, A, and T), protein sequence space has a dimensionality of 20n. Similarly, while nucleic acids can frequently be directly selected for function from a random sequence population, the corresponding methods for the directed evolution of proteins are generally not as robust, in part because of the larger sequence spaces that must be explored, and in part because protein selection requires a translation step that in turn often requires cellular transformation, an inherently inefficient procedure that limits library size. In addition, the requirement for expression of the protein library in a host places limits on the numbers and types of selections that can be performed. Selecting individual colonies on plates is not well-suited to truly high-throughput methods and generally limits library sizes to on the order of 105. Moreover, the complexity of cellular metabolism provides an almost limitless source of potential artifacts to confound the selection of a given phenotype. For example, attempts to evolve an antibiotic resistance element can be thwarted by the evolution of chromosomal resistance elements or by the evolution of plasmid copy number or promoter strength rather than protein efficiency (1,2). While there are frequently work-arounds for many of the artifacts that might be encountered, they nonetheless ultimately limit the phenotypes that can be selected.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Normark, B. H. and Normark, S. (2002) Evolution and spread of antibiotic resistance. J. Intern. Med. 252, 91–106.

    Article  PubMed  CAS  Google Scholar 

  2. Mortlock, R. P. (1982) Metabolic acquisitions through laboratory selection. Annu. Rev. Microbiol. 36, 259–284.

    Article  PubMed  CAS  Google Scholar 

  3. Brisson, M., He, Y., Li, S., Yang, J. P., and Huang, L. (1999) A novel T7 RNA polymerase autogene for efficient cytoplasmic expression of target genes. Gene Ther. 6, 263–270.

    Article  PubMed  CAS  Google Scholar 

  4. Li, S., Brisson, M., He, Y., and Huang, L. (1997) Delivery of a PCR amplified DNA fragment into cells: a model for using synthetic genes for gene therapy. Gene Ther. 4, 449–454.

    Article  PubMed  CAS  Google Scholar 

  5. Walker, K., Xie, Y., Li, Y., et al. (2001) Cytoplasmic expression of ribozyme in zebrafish using a T7 autogene system. Curr. Issues Mol. Biol. 3, 1–6.

    PubMed  CAS  Google Scholar 

  6. Ghadessy, F. J., Ong, J. L., and Holliger, P. (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA 98, 4552–4557.

    Article  PubMed  CAS  Google Scholar 

  7. Dubendorff, J. W. and Studier, F. W. (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol. 219, 45–59.

    Article  PubMed  CAS  Google Scholar 

  8. Dubendorff, J. W. and Studier, F. W. (1991) Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J. Mol. Biol. 219, 61–68.

    Article  PubMed  CAS  Google Scholar 

  9. Chelliserrykattil, J., Cai, G., and Ellington, A. D. (2001) A combined in vitro/in vivo selection for polymerases with novel promoter specificities. BMC Biotechnol. 1, 13.

    Article  PubMed  CAS  Google Scholar 

  10. Sarkar, P., Sengupta, D., Basu, S., and Maitra, U. (1985) Nucleotide sequence of a major class-III phage-T3 RNA-polymerase promoter located at 98.0% of phage-T3 genetic map. Gene 33, 351–355.

    Article  PubMed  CAS  Google Scholar 

  11. Adhya, S., Basu, S., Sarkar, P., and Maitra, U. (1981) Location, function, and nucleotide sequence of a promoter for bacteriophage T3 RNA polymerase. Proc. Natl. Acad. Sci. USA 78, 147–151.

    Article  PubMed  CAS  Google Scholar 

  12. Bailey, J. N., Klement, J. F., and McAllister, W. T. (1983) Relationship between promoter structure and template specificities exhibited by the bacteriophage T3 and T7 RNA polymerases. Proc. Natl. Acad. Sci. USA 80, 2814–2818.

    Article  PubMed  CAS  Google Scholar 

  13. Raskin, C. A., Diaz, G., Joho, K., and McAllister, W. T. (1992) Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J. Mol. Biol. 228, 506–515.

    Article  PubMed  CAS  Google Scholar 

  14. Rong, M., He, B., McAllister, W. T., and Durbin, R. K. (1998) Promoter specificity determinants of T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 95, 515–519.

    Article  PubMed  CAS  Google Scholar 

  15. Raskin, C. A., Diaz, G. A., and McAllister, W. T. (1993) T7 RNA polymerase mutants with altered promoter specificities. Proc. Natl. Acad. Sci. USA 90, 3147–3151.

    Article  PubMed  CAS  Google Scholar 

  16. Imburgio, D., Rong, M., Ma, K., and McAllister, W. T. (2000) Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 39, 10,419–10,430.

    Article  PubMed  CAS  Google Scholar 

  17. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  18. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res. 16, 6127–6145.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas, M. R. (1994) Simple, effective cleanup of DNA ligation reactions prior to electro-transformation of E. coli. Biotechniques 16, 988–990.

    PubMed  CAS  Google Scholar 

  20. Schmitz, A. and Galas, D. J. (1979) The interaction of RNA polymerase and lac repressor with the lac control region. Nucl. Acids Res. 6, 111–137.

    Article  PubMed  CAS  Google Scholar 

  21. Dunaway, M., Olson, J. S., Rosenberg, J. M., Kallai, O. B., Dickerson, R. E., and Matthews, K. S. (1980) Kinetic studies of inducer binding to lac repressor.operator complex. J. Biol. Chem. 255, 10,115–10,119.

    PubMed  CAS  Google Scholar 

  22. Moffatt, B. A., and Studier, F. W. (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49, 221–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chelliserrykattil, J., Ellington, A.D. (2003). Autogene Selections. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:27

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics