Skip to main content

Investigation of Folding and Degradation of In Vitro Synthesized Mutant Proteins in Microsomes

  • Protocol
Protein Misfolding and Disease

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 232))

  • 1243 Accesses

Abstract

The ability of long polypeptide chains to form correctly folded and functional proteins in the intracellular environment is a complex process, requiring participation of other protein components and biased native-like interactions between residues. Failure to fold correctly can lead to a variety of disease states, in which proteins are deposited in highly organized aggregates or are degraded in the proteasome. Examples of the former are the amyloidoses, such as Alzheimer’s disease (AD) and the spongioform encephalopathies, whereas in cystic fibrosis (CF) and some forms of nephrogenic diabetes insipidus, relevant misfolded protein molecules are degraded. Cell-free protein synthesis is used to examine gene expression, membrane insertion into microsomes or mitochondria, early endoplasmic reticulum (ER) folding events, exclusion mechanisms for misfolded proteins, effects of protein synthesis inhibitors, and even for the production of microgram quantities of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, X., Tsuda, S., Bala, N., and Arakaki, R. F. (2000) Efficient translocation and processing with Xenopus egg extracts of proteins synthesized in rabbit reticulocyte lysate. In Vitro Cell Dev. Biol. Anim. 36, 293–298.

    Article  PubMed  CAS  Google Scholar 

  2. Komar, A. A., Lesnik, T., Cullin, C., Guillemet, E., Ehrlich, R., and Reiss, C. (1997) Differential resistance to proteinase K digestion of the yeast prion-like (Ure2p) protein synthesized in vitro in wheat germ extract and rabbit reticulocyte lysate cell-free translation systems. FEBS Lett. 415, 6–10.

    Article  PubMed  CAS  Google Scholar 

  3. Blagosklonny, M. V., Toretsky, J., Bohen, S., and Neckers, L. (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional Hsp90. Proc. Natl. Acad. Sci. USA 93, 8379–8383.

    Article  PubMed  CAS  Google Scholar 

  4. Mattingly, J. R., Jr., Youssef, J., Iriarte, A., and Martinez-Carrion, M. (1993) Protein folding in a cell-free translation system. The fate of the precursor to mitochondrial aspartate aminotransferase. J. Biol. Chem. 268, 3925–3937.

    PubMed  CAS  Google Scholar 

  5. Lain, B., Iriarte, A., and Martinez-Carrion, M. (1994) Dependence of the folding and import of the precursor to mitochondrial aspartate aminotransferase on the nature of the cell-free translation system. J. Biol. Chem. 269, 15,588–15,596.

    PubMed  CAS  Google Scholar 

  6. Chen, M. and Zhang, J. T. (1996) Membrane insertion, processing, and topology of cystic fibrosis transmembrane conductance regulator (CFTR) in microsomal membranes. Mol. Membr. Biol. 13, 33–40.

    Article  PubMed  CAS  Google Scholar 

  7. Schumacher, R. J., Hansen, W. J., Freeman, B. C., Alnemri, E., Litwack, G., and Toft, D. O. (1996) Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. Biochemistry 35, 14,889–14,898.

    Article  PubMed  CAS  Google Scholar 

  8. Schumacher, R. J., Hurst, R., Sullivan, W. P., McMahon, N. J., Toft, D. O., and Matts, R. L. (1994) ATP-dependent chaperoning activity of reticulocyte lysate. J. Biol. Chem. 269, 9493–9499.

    PubMed  CAS  Google Scholar 

  9. Kawarasaki, Y., Nakano, H., and Yamane, T. (1994) Prolonged cell-free protein synthesis in a batch system using wheat germ extract. Biosci. Biotechnol. Biochem. 58, 1911–1913.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy, P. J., Kanelakis, K. C., Galigniana, M. D., Morishima, Y., and Pratt, W. B. (2001) Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J. Biol. Chem. 276, 30,092–30,098.

    Article  PubMed  CAS  Google Scholar 

  11. Hutchison, K. A., Dittmar, K. D., and Pratt, W. B. (1994) All of the factors required for assembly of the glucocorticoid receptor into a functional heterocomplex with heat shock protein 90 are preassociated in a self-sufficient protein folding structure, a “foldosome”. J. Biol. Chem. 269, 27,894–27,899.

    PubMed  CAS  Google Scholar 

  12. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H., and Cowan, N. J. (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  13. Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M. L., and Sternlicht, H. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248.

    Article  PubMed  CAS  Google Scholar 

  14. Gao, Y., Vainberg, I. E., Chow, R. L., and Cowan, N. J. (1993) Two cofactors and cytoplasmic chaperonin are required for the folding of alpha-and beta-tubulin. Mol. Cell. Biol. 13, 2478–2485.

    PubMed  CAS  Google Scholar 

  15. Nimmesgern, E. and Hartl, F. U. (1993) ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett. 331, 25–30.

    Article  PubMed  CAS  Google Scholar 

  16. Fuller, W. and Cuthbert, A. W. (2000) Post-translational disruption of the delta F508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes delta F508 CFTR in the rabbit reticulocyte lysate. J. Biol. Chem. 275, 37,462–37,468.

    Article  PubMed  CAS  Google Scholar 

  17. Gregory, R. J., Cheng, S. H., Rich, D. P., Marshall, J., Paul, S., Hehir, K., et al. (1990) Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347, 382–386.

    Article  PubMed  CAS  Google Scholar 

  18. Lu, Y., Xiong, X., Helm, A., Kimani, K., Bragin, A., and Skach, W. R. (1998) Co-and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J. Biol. Chem. 273, 568–576.

    Article  PubMed  CAS  Google Scholar 

  19. Sato, S., Ward, C. L., and Kopito, R. R. (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem. 273, 7189–7192.

    Article  PubMed  CAS  Google Scholar 

  20. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  21. Iwamuro, S., Saeki, M., and Kato, S. (1999) Multi-ubiquitination of a nascent membrane protein produced in a rabbit reticulocyte lysate. J. Biochem. (Tokyo) 126, 48–53.

    CAS  Google Scholar 

  22. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X. B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086.

    PubMed  CAS  Google Scholar 

  23. Ward, C. L. and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25,710–25,718.

    PubMed  CAS  Google Scholar 

  24. Hempel, R., Schmidt-Brauns, J., Gebinoga, M., Wirsching, F., and Schwienhorst, A. (2001) Cation radius effects on cell-free translation in rabbit reticulocyte lysate. Biochem. Biophys. Res. Commun. 283, 267–272.

    Article  PubMed  CAS  Google Scholar 

  25. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  PubMed  CAS  Google Scholar 

  26. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.

    Article  PubMed  CAS  Google Scholar 

  27. Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.

    Article  PubMed  CAS  Google Scholar 

  28. Hochstrasser, M. (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7, 215–223.

    Article  PubMed  CAS  Google Scholar 

  29. Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583.

    Article  PubMed  CAS  Google Scholar 

  30. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061.

    PubMed  CAS  Google Scholar 

  31. Gross, M. (1980) The control of protein synthesis by hemin in rabbit reticulocytes. Mol. Cell. Biochem. 31, 25–36.

    Article  PubMed  CAS  Google Scholar 

  32. Haas, A. L. and Rose, I. A. (1981) Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proc. Natl. Acad. Sci. USA 78, 6845–6848.

    Article  PubMed  CAS  Google Scholar 

  33. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996) Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chap. 1, 117–125.

    Article  CAS  Google Scholar 

  34. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J., and Kopito, R. R. (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638.

    Article  PubMed  CAS  Google Scholar 

  35. Beckmann, R. P., Mizzen, L. E., and Welch, W. J. (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854.

    Article  PubMed  CAS  Google Scholar 

  36. Hutchison, K. A., Stancato, L. F., Jove, R., and Pratt, W. B. (1992) The protein-protein complex between pp60v-src and hsp90 is stabilized by molybdate, vanadate, tungstate, and an endogenous cytosolic metal. J. Biol. Chem. 267, 13,952–13,957.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cuthbert, A.W., Fuller, W. (2003). Investigation of Folding and Degradation of In Vitro Synthesized Mutant Proteins in Microsomes. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Disease. Methods in Molecular Biology™, vol 232. Humana Press. https://doi.org/10.1385/1-59259-394-1:265

Download citation

  • DOI: https://doi.org/10.1385/1-59259-394-1:265

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-065-6

  • Online ISBN: 978-1-59259-394-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics