Skip to main content

Detection and Titration of Lentivirus Vector Preparations

  • Protocol
  • 1275 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 229))

Abstract

The accurate quantification of functional vector particles within a given vector preparation or stock is of fundamental importance to virtually all potential gene transfer applications for any viral vector of interest. This accuracy is especially critical if anticipated clinical applications will require scale-up of vector production or if multiple different vector stocks will be required for serial transductions of target cell populations over the course of a series of experiments. Standard notations designating the quantity of functional particles in a vector preparation include infectious units (i.u.) per milliliter and transducing units (TU) per milliliter (1). These units are interchangeable and represent the number of functional vector particles per volume of vector containing supernatant. The quantification of infectious or transducing units per unit volume allows transductions to be conducted based on the number of vector particles added per target cell and will therefore be standardized yielding more reproducible results. The numerical relationship between vector particles utilized per single target cell is designated as the multiplicity of infection (MOI). Establishing an appropriate MOI for a given transduction will, in part, depend on the desired transduction efficiency or, to an extent, the approximate number of chromosomal integrants desired per cell. Accurate vector stock titers will allow for the establishment of controlled transduction conditions and will, therefore, reduce experimental variability and simplify the interpretation of results obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599.

    Article  PubMed  CAS  Google Scholar 

  2. Cone, R. D. and Mulligan, R. C. (1984) High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc. Natl. Acad. Sci. USA 81, 6349–6353.

    Article  PubMed  CAS  Google Scholar 

  3. Hock, R. A. and Miller, A. D. (1986) Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells. Nature 320, 275–277.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, A. D., Eckner, R. J., Jolly, D. J., Friedmann, T., and Verma, I. M. (1984) Expression of a retrovirus encoding human HPRT in mice. Science 225, 630–632.

    Article  PubMed  CAS  Google Scholar 

  5. Miller, A. D., Law, M. F., and Verma, I. M. (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol. Cell Biol. 5, 431–437.

    PubMed  CAS  Google Scholar 

  6. Miller, A. D., Ong, E. S., Rosenfeld, M. G., Verma, I. M., and Evans, R. M. (1984) Infectious and selectable retrovirus containing an inducible rat growth hormone minigene. Science 225, 993–998.

    Article  PubMed  CAS  Google Scholar 

  7. Stuhlmann, H., Cone, R., Mulligan, R. C., and Jaenisch, R. (1984) Introduction of a selectable gene into different animal tissue by a retrovirus recombinant vector. Proc. Natl. Acad. Sci. USA 81, 7151–7155.

    Article  PubMed  CAS  Google Scholar 

  8. Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C. (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480.

    Article  PubMed  CAS  Google Scholar 

  9. Allay, J. A., Persons, D. A., Galipeau, J., et al. (1998) In vivo selection of retrovirally transduced hematopoietic stem cells. Nat. Med. 4, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  10. Allay, J. A., Spencer, H. T., Wilkinson, S. L., Belt, J. A., Blakley, R. L., and Sorrentino, B. P. (1997) Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleoside transport inhibitors. Blood 90, 3546–3554.

    PubMed  CAS  Google Scholar 

  11. Corey, C. A., DeSilva, A. D., Holland, C. A., and Williams, D. A. (1990) Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells. Blood 75, 337–343.

    PubMed  CAS  Google Scholar 

  12. Evans, J. T., Cravens, P., Gatlin, J., Kelly, P. F., Lipsky, P. E., and Garcia, J. V. (2001) Pre-clinical evaluation of an in vitro selection protocol for the enrichment of transduced CD34+ cell-derived human dendritic cells. Gene Ther. 8, 1427–1435.

    Article  PubMed  CAS  Google Scholar 

  13. Gatlin, J., Douglas, J., Evans, J. T., Collins, R. H., Wendel, G. D., and Garcia, J. V. (2000) In vitro selection of lentivirus vector-transduced human CD34+ cells (In Process Citation). Hum. Gene Ther. 11, 1949–1957.

    Article  PubMed  CAS  Google Scholar 

  14. Lewis, W. S., Cody, V., Galitsky, N., et al. (1995) Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J. Biol. Chem. 270, 5057–5064.

    Article  PubMed  CAS  Google Scholar 

  15. Spencer, H. T., Sleep, S. E., Rehg, J. E., Blakley, R. L., and Sorrentino, B. P. (1996) A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood 87, 2579–2587.

    PubMed  CAS  Google Scholar 

  16. Blau, C. A., Neff, T., and Papayannopoulou, T. (1997) Cytokine prestimulation as a gene therapy strategy: implications for using the MDR1 gene as a dominant selectable marker. Blood 89, 146–154.

    PubMed  CAS  Google Scholar 

  17. Schiedlmeier, B., Kuhlcke, K., Eckert, H. G., Baum, C., Zeller, W. J., and Fruehauf, S. (2000) Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice. Blood 95, 1237–1248.

    PubMed  CAS  Google Scholar 

  18. Sorrentino, B. P., Brandt, S. J., Bodine, D., et al. (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103.

    Article  PubMed  CAS  Google Scholar 

  19. Allay, J. A., Davis, B. M., and Gerson, S. L. (1997) Human alkyltransferase-transduced murine myeloid progenitors are enriched in vivo by BCNU treatment of transplanted mice. Exp. Hematol. 25, 1069–1076.

    PubMed  CAS  Google Scholar 

  20. Davis, B. M., Reese, J. S., Koc, O. N., Lee, K., Schupp, J. E., and Gerson, S. L. (1997) Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 57, 5093–5099.

    PubMed  CAS  Google Scholar 

  21. Maze, R., Kapur, R., Kelley, M. R., Hansen, W. K., Oh, S. Y., and Williams, D. A. (1997) Reversal of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced severe immunodeficiency by transduction of murine long-lived hemopoietic progenitor cells using O6-methylguanine DNA methyltransferase complementary DNA. J. Immunol. 158, 1006–1013.

    PubMed  CAS  Google Scholar 

  22. Douglas, J., Kelly, P., Evans, J. T., and Garcia, J. V. (1999) Efficient transduction of human lymphocytes and CD34+ cells via human immunodeficiency virus-based gene transfer vectors. Hum. Gene Ther. 10, 935–945.

    Article  PubMed  CAS  Google Scholar 

  23. Evans, J. T., Kelly, P. F., O’Neill, E., and Garcia, J. V. (1999) Human cord blood CD34+CD38 cell transduction via lentivirus-based gene transfer vectors. Hum. Gene Ther. 10, 1479–1489.

    Article  PubMed  CAS  Google Scholar 

  24. Gatlin, J., Melkus, M. W., Padgett, A., Kelly, P. F., and Garcia, J. V. (2001) Engraftment of NOD/SCID mice with human CD34(+) cells transduced by concentrated oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. J. Virol. 75, 9995–9999.

    Article  PubMed  CAS  Google Scholar 

  25. Gatlin, J., Padgett, A., Melkus, M. W., Kelly, P. F., and Garcia, J. V. (2001). Long-term engraftment of nonobese diabetic/severe combined immunodeficient mice with human CD34+ cells transduced by a self-inactivating human immunodeficiency virus type 1 vector. Hum. Gene Ther. 12(9), 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  26. Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.

    Article  PubMed  CAS  Google Scholar 

  27. Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  28. Ranga, U., Woffendin, C., Yang, Z. Y., et al. (1997) Cell and viral regulatory elements enhance the expression and function of a human immunodeficiency virus inhibitory gene. J. Virol. 71, 7020–7029.

    PubMed  CAS  Google Scholar 

  29. Granelli-Piperno, A., Zhong, L., Haslett, P., Jacobson, J., and Steinman, R. M. (2000) Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1-infected individuals. J. Immunol. 165, 6620–6626.

    PubMed  CAS  Google Scholar 

  30. Li, X., Mukai, T., Young, D., Frankel, S., Law, P., and Wong-Staal, F. (1998) Transduction of CD34+ cells by a vesicular stomach virus protein G (VSV-G) pseudotyped HIV-1 vector. Stable gene expression in progeny cells, including dendritic cells. J. Hum. Virol. 1, 346–352.

    PubMed  CAS  Google Scholar 

  31. Belt, J. A., Marina, N. M., Phelps, D. A., and Crawford, C. R. (1993) Nucleoside transport in normal and neoplastic cells. Adv. Enzyme Regul. 33, 235–252.

    Article  PubMed  CAS  Google Scholar 

  32. Lynch, T. P., Paran, J. H., and Paterson, A. R. (1981) Therapy of mouse leukemia L1210 with combinations of nebularine and nitrobenzylthioinosine 5′-monophosphate. Cancer Res. 41, 560–565.

    PubMed  CAS  Google Scholar 

  33. Rongen, G. A., Smits, P., Ver Donck, K., et al. (1995) Hemodynamic and neurohumoral effects of various grades of selective adenosine transport inhibition in humans. Implications for its future role in cardioprotection. J. Clin. Invest. 95, 658–668.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Gatlin, J., Islas-Ohlmayer, M., Garcia, J.V. (2003). Detection and Titration of Lentivirus Vector Preparations. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology™, vol 229. Humana Press. https://doi.org/10.1385/1-59259-393-3:57

Download citation

  • DOI: https://doi.org/10.1385/1-59259-393-3:57

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-091-5

  • Online ISBN: 978-1-59259-393-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics