Skip to main content

Small- to Large-Scale Production of Lentivirus Vectors

  • Protocol
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 229))

Abstract

Lentiviral vectors have traditionally been produced in human embryonic kidney 293T cells (1), involving transient transfection procedures that were originally established for the production of retroviral vectors based on Moloney murine leukemia (MoMLV) virus (2). Simian virus 40 (SV40)-transformed African green monkey kidney (COS-7) cells (3) and human TE671 rhabdomyosarcoma cells (4) have also been used to generate human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (57), but titers obtained in 293T cells are generally higher than those observed in other cell lines. Page et al. (5) were the first to describe an HIV-1-based vector harboring a selectable transgene. The HIV-1 genome was rendered replication defective in this study by replacing the envelope (Env)-encoding gp160 sequence with a guanine-phosphoribosyl transferase (gpt) gene driven by the SV40 early promoter. Transient cotransfection of COS-7 cells with this env-deleted vector and a gp160 expression vector resulted in packaging of the defective HIV-gpt genome into infectious virions. Upon infection of susceptible cells, the gpt drug resistance gene was transmitted and expressed, allowing transduced cells to be selected in mycophenolic acid (5). Landau et al. (8) subsequently demonstrated that expression of heterologous Env proteins, including the MoMLV Env and the human T-cell leukemia virus type I (HTLV-I) Env, in cells transfected with the HIV-gpt vector resulted in the production of vector pseudotypes capable of infecting human as well as murine cells with titers reaching 105 colony-forming units (CFU) per mL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell Biol. 7, 379–387.

    PubMed  CAS  Google Scholar 

  2. Soneoka, Y., Cannon, P. M., Ramsdale, E. E., et al. (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633.

    Article  PubMed  CAS  Google Scholar 

  3. Gluzman, Y. (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182.

    Article  PubMed  CAS  Google Scholar 

  4. Stratton, M. R., Reeves, B. R., and Cooper, C. S. (1989) Misidentified cell. Nature 337, 311–312.

    Article  PubMed  CAS  Google Scholar 

  5. Page, K. A., Landau, N. R., and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276.

    PubMed  CAS  Google Scholar 

  6. Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93, 15,266–15,271.

    Article  PubMed  CAS  Google Scholar 

  7. Chang, L. J., Urlacher, V., Iwakuma, T., Cui, Y., and Zucali, J. (1999) Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther. 6, 715–728.

    Article  PubMed  CAS  Google Scholar 

  8. Landau, N. R., Page, K. A., and Littman, D. R. (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162–169.

    PubMed  CAS  Google Scholar 

  9. Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., and Chen, I. S. (1996) High-efficiency gene transfer into CD34+ cells with a human immunode-ficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585.

    PubMed  CAS  Google Scholar 

  10. Naldini, L., Blömer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  11. Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O., and Reiser, J. (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883.

    PubMed  CAS  Google Scholar 

  12. Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  13. Hanawa, H., Kelly, P. F., Nathwani, A. C., et al. (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242–251.

    Article  PubMed  CAS  Google Scholar 

  14. Carroll, R., Lin, J. T., Dacquel, E. J., Mosca, J. D., Burke, D. S., and St Louis, D. C. (1994) A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 68, 6047–6051.

    PubMed  CAS  Google Scholar 

  15. Corbeau, P., Kraus, G., and Wong-Staal, F. (1996) Efficient gene transfer by a human immunodeficiency virus type 1 (HIV-1)-derived vector utilizing a stable HIV packaging cell line. Proc. Natl. Acad. Sci. USA 93, 14,070–14,075.

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan, A. H. and Swanstrom, R. (1991) The HIV-1 gag precursor is processed via two pathways: implications for cytotoxicity. Biomed. Biochim. Acta 50, 647–653.

    PubMed  CAS  Google Scholar 

  17. Rogel, M. E., Wu, L. I., and Emerman, M. (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J. Virol. 69, 882–888.

    PubMed  CAS  Google Scholar 

  18. Li, Y., Drone, C., Sat, E., and Ghosh, H. P. (1993) Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J. Virol. 67, 4070–4077.

    PubMed  CAS  Google Scholar 

  19. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  20. No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  21. Yu, H., Rabson, A. B., Kaul, M., Ron, Y., and Dougherty, J. P. (1996) Inducible human immunodeficiency virus type 1 packaging cell lines. J. Virol. 70, 4530–4537.

    PubMed  CAS  Google Scholar 

  22. Kaul, M., Yu, H., Ron, Y., and Dougherty, J. P. (1998) Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology 249, 167–174.

    Article  PubMed  CAS  Google Scholar 

  23. Kafri, T., van Praag, H., Ouyang, L., Gage, F. H., and Verma, I. M. (1999) A packaging cell line for lentivirus vectors. J. Virol. 73, 576–584.

    PubMed  CAS  Google Scholar 

  24. Klages, N., Zufferey, R., and Trono, D. (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2, 170–176.

    Article  PubMed  CAS  Google Scholar 

  25. Xu, K., Ma, H., McCown, T. J., Verma, I. M., and Kafri, T. (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 3, 97–104.

    Article  PubMed  CAS  Google Scholar 

  26. Pacchia, A. L., Adelson, M. E., Kaul, M., Ron, Y., and Dougherty, J. P. (2001) An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology 282, 77–86.

    Article  PubMed  CAS  Google Scholar 

  27. Farson, D., Witt, R., McGuinness, R., et al. (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 12, 981–997.

    Article  PubMed  CAS  Google Scholar 

  28. Sparacio, S., Pfeiffer, T., Schaal, H., and Bosch, V. (2001) Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol. Ther. 3, 602–612.

    Article  PubMed  CAS  Google Scholar 

  29. Canivet, M., Hoffman, A. D., Hardy, D., Sernatinger, J., and Levy, J. A. (1990) Replication of HIV-1 in a wide variety of animal cells following phenotypic mixing with murine retroviruses. Virology 178, 543–551.

    Article  PubMed  CAS  Google Scholar 

  30. Lusso, P., di Marzo Veronese, F., Ensoli, B., et al. (1990) Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science 247, 848–852.

    Article  PubMed  CAS  Google Scholar 

  31. Chesebro, B., Wehrly, K., and Maury, W. (1990) Differential expression in human and mouse cells of human immunodeficiency virus pseudotyped by murine retroviruses. J. Virol. 64, 4553–4557.

    PubMed  CAS  Google Scholar 

  32. Spector, D. H., Wade, E., Wright, D. A., et al. (1990) Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J. Virol. 64, 2298–2308.

    PubMed  CAS  Google Scholar 

  33. Zhu, Z. H., Chen, S. S., and Huang, A. S. (1990) Phenotypic mixing between human immunodeficiency virus and vesicular stomatitis virus or herpes simplex virus. J. Acquir. Immune Defic. Syndr. 3, 215–219.

    PubMed  CAS  Google Scholar 

  34. Landau, N. R. and Littman, D. R. (1992) Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J. Virol. 66, 5110–5113.

    PubMed  CAS  Google Scholar 

  35. Sutton, R. E. and Littman, D. R. (1996) Broad host range of human T-cell leukemia virus type 1 demonstrated with an improved pseudotyping system. J. Virol. 70, 7322–7326.

    PubMed  CAS  Google Scholar 

  36. Stitz, J., Buchholz, C. J., Engelstadter, M., et al. (2000) Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 273, 16–20.

    Article  PubMed  CAS  Google Scholar 

  37. Christodoulopoulos, I. and Cannon, P. M. (2001) Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J. Virol. 75, 4129–4138.

    Article  PubMed  CAS  Google Scholar 

  38. Lewis, B. C., Chinnasamy, N., Morgan, R. A., and Varmus, H. E. (2001) Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J. Virol. 75, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  39. Beyer, W. R., Westphal, M., Ostertag, W., and von Laer, D. (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J. Virol. 76, 1488–1495.

    Article  PubMed  CAS  Google Scholar 

  40. Kobinger, G. P., Weiner, D. J., Yu, Q. C., and Wilson, J. M. (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat. Biotechnol. 19, 225–230.

    Article  PubMed  CAS  Google Scholar 

  41. Chan, S. Y., Speck, R. F., Ma, M. C., and Goldsmith, M. A. (2000) Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J. Virol. 74, 4933–4937.

    Article  PubMed  CAS  Google Scholar 

  42. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  43. Bartz, S. R. and Vodicka, M. A. (1997) Production of high-titer human immuno-deficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods 12, 337–342.

    Article  PubMed  CAS  Google Scholar 

  44. Reiser, J. (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther. 7, 910–913.

    Article  PubMed  CAS  Google Scholar 

  45. VandenDriessche, T., Naldini, L., Collen, D., and Chuah, M. K. (2002) Oncoretroviral and lentiviral vector-mediated gene therapy. Methods Enzymol. 346, 573–589.

    Article  PubMed  CAS  Google Scholar 

  46. Stein, C. S. and Davidson, B. L. (2002) Gene transfer to the brain using feline immunodeficiency virus-based lentivirus vectors. Methods Enzymol. 346, 433–454.

    Article  PubMed  CAS  Google Scholar 

  47. Nomura, T., Yabe, T., Mochizuki, H., Reiser, J., Becerra, S. P., and Schwartz, J. P. (2001) Survival effects of pigment epithelium-derived factor expressed by a lentiviral vector in rat cerebellar granule cells. Dev. Neurosci. 23, 145–152.

    Article  PubMed  CAS  Google Scholar 

  48. Cui, Y., Golob, J., Kelleher, E., Ye, Z., Pardoll, D., and Cheng, L. (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99, 399–408.

    Article  PubMed  CAS  Google Scholar 

  49. Pham, L., Ye, H., Cosset, F. L., Russell, S. J., and Peng, K. W. (2001) Concentration of viral vectors by co-precipitation with calcium phosphate. J. Gene Med. 3, 188–194.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, B., Xia, H. Q., Cleghorn, G., Gobe, G., West, M., and Wei, M. Q. (2001) A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Ther. 8, 1745–1751.

    Article  PubMed  CAS  Google Scholar 

  51. Scherr, M., Battmer, K., Blömer, U., et al. (2002) Lentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells. Blood 99, 709–712.

    Article  PubMed  CAS  Google Scholar 

  52. Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A., and Collins, M. K. (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.

    PubMed  CAS  Google Scholar 

  53. Reiser, J., Lai, Z., Zhang, X. Y., and Brady, R. O. (2000) Development of multigene and regulated lentivirus vectors. J. Virol. 74, 10,589–10,599.

    Article  PubMed  CAS  Google Scholar 

  54. Wu, X., Wakefield, J. K., Liu, H., Xiao, H., Kralovics, R., Prchal, J. T., and Kappes, J. C. (2000) Development of a novel trans-lentiviral vector that affords predictable safety. Mol. Ther. 2, 47–55.

    Article  PubMed  CAS  Google Scholar 

  55. Sakoda, T., Kasahara, N., Hamamori, Y., and Kedes, L. (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell Cardiol. 31, 2037–2047.

    Article  PubMed  CAS  Google Scholar 

  56. Higashikawa, F. and Chang, L. (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280, 124–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Marino, M.P., Luce, M.J., Reiser, J. (2003). Small- to Large-Scale Production of Lentivirus Vectors. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology™, vol 229. Humana Press. https://doi.org/10.1385/1-59259-393-3:43

Download citation

  • DOI: https://doi.org/10.1385/1-59259-393-3:43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-091-5

  • Online ISBN: 978-1-59259-393-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics