Skip to main content

Hematopoietic Stem and Progenitor Cells

  • Protocol
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 229))

  • 1141 Accesses

Abstract

There has been much effort in isolating hematopoietic stem cells (HSC) and some confusion within the literature on what even a HSC is, with some investigators using the term inappropriately (1). A HSC is a cell capable of both self-renewal and of deriving progeny of all hematopoietic cell lineages, that is, a single HSC can regenerate erythroid, myeloid, megakaryocytic, and lymphoid lineages in a myeloablated host. Progenitor cells, on the other hand, are cells committed to one or a few lineages having a limited capacity for self-renewal. Progenitors are the progeny of HSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orlic, D. and Bodine, D. M. (1994) What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! Blood 84, 3991–3994.

    PubMed  CAS  Google Scholar 

  2. Baumheter, S., Singer, M. S., Henzel, W., et al. (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262, 436–438.

    Article  PubMed  CAS  Google Scholar 

  3. Civin, C. I., Brovall, C., Fackler, M. J., Schwartz J. F., and Shaper J. H. (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 133, 157–165.

    PubMed  CAS  Google Scholar 

  4. Fina, L., Molgaard, H. V., Robertson, D., et al. (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75, 2417–2426.

    PubMed  CAS  Google Scholar 

  5. Andrews, R. G., Singer, J. W., and Bernstein, I. D. (1990) Human hematopoietic precursors in long-term culture: single CD34+ cells that lack detectable T cell, B cell, and myeloid cell antigens produce multiple colony-forming cells when cultured with marrow stromal cells. J. Exp. Med. 172, 355–358.

    Article  PubMed  CAS  Google Scholar 

  6. Bender, J. G., Unverzagt, K., Walker, D. E., et al. (1994) Phenotypic analysis and characterization of CD34+ cells from normal human bone marrow, cord blood, peripheral blood, and mobilized peripheral blood from patients undergoing autologous stem cell transplantation. Clin. Immunol. Immunopathol. 70, 10–18.

    Article  PubMed  CAS  Google Scholar 

  7. Sutherland, D. R., Keating, A., Nayar, R., Anania, S., and Stewart, A. K. (1994) Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp. Hematol. 22, 1003–1010.

    PubMed  CAS  Google Scholar 

  8. Fritsch, G., Stimpfl, M., Buchinger, P., et al. (1994) Does cord blood contain enough progenitor cells for transplantation? J. Hematother. 3, 291–298.

    Article  PubMed  CAS  Google Scholar 

  9. Bender, J. G., Unverzagt, K. L., Walker, D. E., et al. (1991) Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood 77, 2591–2596.

    PubMed  CAS  Google Scholar 

  10. Bender, J. G. and Unverzagt, K. (1993) Flow cytometric analysis of peripheral blood stem cells. J. Hematother. 2, 421–430.

    Article  PubMed  CAS  Google Scholar 

  11. Berenson, R. J., Bensinger, W. I., Hill, R. S., et al. (1991) Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77, 1717–1722.

    PubMed  CAS  Google Scholar 

  12. Berenson, R. J., Andrews, R. G., Bensinger, W. I., et al. (1998) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J. Clin. Invest. 81, 951–955.

    Article  Google Scholar 

  13. Osawa, M.., Hanada, K., Hamada, H., and Nakauchi, H. (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.

    Article  PubMed  CAS  Google Scholar 

  14. Sato, T., Laver, J. H., and Ogawa, M. (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94, 2548–2554.

    PubMed  CAS  Google Scholar 

  15. Goodell, M. A. (1999) CD34+or CD34−: Does it Really Matter? Blood 94, 2545–2547.

    PubMed  CAS  Google Scholar 

  16. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., and Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  17. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  18. Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., and Gimble, J. M. (2001) Surface protein characterization of human adipose tissuederived stromal cells. J. Cell Physiol. 189, 54–63.

    Article  PubMed  CAS  Google Scholar 

  19. Jackson, K. A., Mi, T., and Goodell, M. A. (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA 96, 14,482–14,486.

    Article  PubMed  CAS  Google Scholar 

  20. Jackson, K. A., Majka, S. M., Wang, H., et al. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  21. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., and Goodell, M. A. (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc. Natl. Acad. Sci. USA 99, 1341–1346.

    Article  PubMed  CAS  Google Scholar 

  22. Varmus, H. E., Padgett, T., Heasley, S., Simon, G., and Bishop, J. M. (1977) Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell 11, 307–319.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  24. Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., et al. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669.

    Article  PubMed  CAS  Google Scholar 

  25. Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93, 15,266–15,271.

    Article  PubMed  CAS  Google Scholar 

  26. Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., and Chen, I. S. (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585.

    PubMed  CAS  Google Scholar 

  27. An, D. S., Koyanagi, Y., Zhao, J. Q., et al. (1997) High-efficiency transduction of human lymphoid progenitor cells and expression in differentiated T cells. J. Virol. 71, 1397–1404.

    PubMed  CAS  Google Scholar 

  28. Donahue, R. E., Sorrentino, B. P., Hawley, R. G., An, D. S., Chen, I. S., and Wersto, R. P. (2001) Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+cells. Mol. Ther. 3, 359–367.

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt, M., Hoffmann, G., Wissler, M., et al. (2001) Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum. Gene Ther. 12, 743–749.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, H. J., Tisdale, J. F., Wu, T., et al. (2000) Many multipotential gene-marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman primates. Blood 96, 1–8.

    PubMed  CAS  Google Scholar 

  31. Jones, R. J., Wagner, J. E., Celano, P., Zicha, M. S., and Sharkis, S. J. (1990) Separation of pluripotent hematopoietic stem cells from spleen colony-forming cells. Nature 347, 188, 189.

    Article  PubMed  CAS  Google Scholar 

  32. Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.

    Article  PubMed  CAS  Google Scholar 

  33. Naldini, L., Blomer, U., Gallay, P., et al. (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  34. Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of non-dividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93, 15,266–15,271.

    Article  PubMed  CAS  Google Scholar 

  35. Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., and Verma, I. M. (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17, 314–317.

    Article  PubMed  CAS  Google Scholar 

  36. Sutton, R. E., Wu, H. T., Rigg, R., Bohnlein, E., and Brown, P. O. (1998) Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J. Virol. 72, 5781–5788.

    PubMed  CAS  Google Scholar 

  37. Korin, Y. D. and Zack, J. A. (1998) Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J. Virol. 72, 3161–3168.

    PubMed  CAS  Google Scholar 

  38. Moritz, T., Patel, V. P., and Williams, D. A. (1994) Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93, 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  39. Moritz, T., Dutt, P., Xiao, X., et al. (1996) Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88, 855–862.

    PubMed  CAS  Google Scholar 

  40. Hanenberg, H., Xiao, X. L., Dilloo, D., Hashino, K., Kato, I., and Williams, D. A. (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat. Med. 2, 876–882.

    Article  PubMed  CAS  Google Scholar 

  41. Hanenberg, H., Hashino, K., Konishi, H., Hock, R. A., Kato, I., and Williams, D. A. (1997) Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum. Gene Ther. 8, 2193–2206.

    Article  PubMed  CAS  Google Scholar 

  42. Kiem H. P., Andrews R. G., Morris J., et al. (1998) Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 92, 1878–1886.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Donahue, R.E., Chen, I.S.Y. (2003). Hematopoietic Stem and Progenitor Cells. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology™, vol 229. Humana Press. https://doi.org/10.1385/1-59259-393-3:117

Download citation

  • DOI: https://doi.org/10.1385/1-59259-393-3:117

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-091-5

  • Online ISBN: 978-1-59259-393-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics