Skip to main content

Antisense Oligonucleotide Inhibitors of MDM2 Oncogene Expression

  • Protocol
Novel Anticancer Drug Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 85))

  • 875 Accesses

Abstract

Antisense therapy represents a novel genetic-based therapeutic approach, initiated by Zamecnik et al. about 20 years ago (1). The rationale for antisense oligonucleotide therapeutics is straightforward: to identify a specific inhibitor of an mRNA of interest on the basis of the nucleotide sequence of the mRNA and design a complementary oligonucleotide (oligo). Thus, antisense approaches offer the possibility of specific, rational drugs. Over the years, although there have been many concerns that have limited enthusiasm for the development of these drugs from the preclinical to the clinical level (2,3), significant advances have been made in this field of research. The development of improved synthetic methods yielding sufficient quantities of antisense oligos has allowed extensive preclinical and clinical pharmacologic and toxicologic studies. Advanced antisense chemistry providing various modifications of oligos has resulted in improved pharmacokinetic, pharmacodynamic, and toxicologic profiles of antisense oligos. Extensive studies examining both specific and non-specific effects of oligos have led to a better design of antisense sequences to target genes. More recently, several antisense oligos have entered clinical use or clinical trials, including those targeted to genes important in human cancers (410), with the first antisense drug Vitravene being approved for the treatment of patients with cytomegalovirus-induced retinitis (5). Research in the antisense field has been reviewed periodically (39).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamecnik, P.C. (1996) History of antisense oligonucleotides, in Antisense Therapeutics (Agrawal, S., ed.), Humana Press, Totowa, NJ, pp. 1–12.

    Chapter  Google Scholar 

  2. Stein, C. A. and Cheng, Y. C. (1993) Antisense oligonucleotides as therapeutic agents. Is the bullet really magical? Science 261, 1004–1012.

    Article  PubMed  CAS  Google Scholar 

  3. Diasio, R. B. and Zhang, R. (1997) Pharmacology of therapeutic oligonucleotides. Antisense Nucl. Acid Drug Dev. 7, 239–243.

    CAS  Google Scholar 

  4. Agrawal, S. (1996) Antisense oligonucleotides: towards clinical trial. Trends Biotech. 14, 376–387.

    Article  CAS  Google Scholar 

  5. Crooke, S. T. (1998) Antisense Research and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  6. Wickstrom, E. (1998) Clinical Trials of Genetic Therapy with Antisense DNA and DNA Vectors, Marcel Dekker, New York.

    Google Scholar 

  7. Kushner, D. M. and Silverman, R. H. (2000) Antisense cancer therapy: the state of the science. Curr. Oncol. Rep. 2, 23–30.

    Article  PubMed  CAS  Google Scholar 

  8. Monia, B. P., HolmLund, J., and Dorr, F. A. (2000) Antisense approaches for the treatment of cancer. Cancer Invest. 18, 635–650.

    Article  PubMed  CAS  Google Scholar 

  9. Gewirtz, A. M. (2000) Oligonucleotide therapeutics: a step forward. J. Clin. Oncol. 18, 1809–1811.

    PubMed  CAS  Google Scholar 

  10. Zhang, R. and Wang, H. (2000) Antisense oligonucleotides as anti-tumor therapeutics. Recent Res. Dev. Cancer 2, 61–76.

    Google Scholar 

  11. Zhang, R., Yan, J., Shahinian, H., et al. (1995) Pharmacokinetics of an oligodeoxy-nucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin. Pharmacol. Ther. 58, 44–53.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, R., Diasio, R. B., Lu, Z., et al. (1995) Pharmacokinetics and tissue disposition in rats of an oligodeoxynucleotide phosphorothioate (GEM 91) developed as a therapeutic agent for human immunodeficiency virus type-1. Biochem. Pharm. 49, 929–939.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, R., Lu, Z., Zhao, H., et al. (1995) In vivo stability, disposition, and metabolism of a “hybrid” oligonucleotide phosphorothioate in rats. Biochem. Pharmacol. 50, 545–556.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, R., Iyer, P., Yu, D., et al. (1996) Pharmacokinetics and tissue disposition of a chimeric oligodeoxynucleotide phosphorothioate in rats following intravenous administration. J. Pharm. Exp. Ther. 278, 971–979.

    CAS  Google Scholar 

  15. Agrawal, S. and Zhang, R. (1997) Pharmacokinetics of phosphorothioate oligonucleotide and its novel analogs, in Antisense Oligodeoxynucleotides and Antisense RNA as Novel Pharmacological and Therapeutic Agents (Weiss, B., ed.), CRC Press, Boca Raton, FL, pp. 58–78.

    Google Scholar 

  16. Agrawal, S. and Zhang, R. (1997) Pharmacokinetics of oligonucleotides, in Oligonucleotides as Therapeutic Agents. CIBA Foundation Symposium 209, Wiley, Chichester, pp. 60–78.

    Google Scholar 

  17. Agrawal, S. and Iyer, R. P. (1995) Modified oligonucleotides as therapeutic and diagnostic agents. Curr. Opin. Biotechnol. 6, 112–119.

    Article  Google Scholar 

  18. Agrawal, S., Zhang, X., Zhao, H., et al. (1995) Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem. Pharm. 50, 571–576.

    Article  PubMed  CAS  Google Scholar 

  19. Agrawal, S., Jiang, Z., Zhao, Q., et al. (1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: In vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625.

    Article  PubMed  CAS  Google Scholar 

  20. Agrawal, S. and Zhang, R. (1998) Pharmacokinetics and bioavailability of oligonucleotides following oral and colorectal administrations in experimental animals, in Antisense Research and Applications (Crooke, S., ed.), Springer-Verlag, Heidelberg, pp. 525–543.

    Google Scholar 

  21. Wang, H., Cai, Q., Zeng, X., Yu, D., Agrawal, S., and Zhang, R. (1999) Anti-tumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to RIα subunit of protein kinase A after oral administration. Proc. Natl. Acad. Sci. USA 96, 13,989–13,994.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, H. X., Marchall, J. L., Ness, E., et al. (2000) A safety and pharmackinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusion in patients with refractory solid tumors. Clin. Cancer Res. 6, 1259–1266.

    PubMed  CAS  Google Scholar 

  23. Prives, C. and Hall, P. A. (1999) The p53 pathway. J. Pathol. 187, 112–126.

    Article  PubMed  CAS  Google Scholar 

  24. Piette, J., Neel, H., and Marechal, V. (1997) Mdm2: keeping p53 under control. Oncogene 15, 1001–1010.

    Article  PubMed  CAS  Google Scholar 

  25. Cahilly-Snyder, L., Yang, F. T., Francke, U., and George, D. L. (1987) Molecular anlaysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat. Cell Mol. Genet. 13, 235–244.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, R. and Wang, H. (2000) MDM2 oncogene as a novel target for human cancer therapy. Curr. Pharm. Design 6, 393–416.

    Article  CAS  Google Scholar 

  27. Momand, J. and Zambetti, G. P. (1997) Mdm-2: “big brother” of p53. J. Cell Biochem. 64, 343–352.

    Article  PubMed  CAS  Google Scholar 

  28. Prives, C. (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5–8.

    Article  PubMed  CAS  Google Scholar 

  29. Lozano, G. and Montes de Oca Luna, R. (1998) MDM2 function. Biochim. Biophys. Acta 1377, M55–M59.

    Google Scholar 

  30. Juven-Gershon, T. and Oren, M. (1999) Mdm2: the ups and downs. Mol. Med. 5, 71–83.

    PubMed  CAS  Google Scholar 

  31. Freedman, D. A., Wu, L., and Levine, A. J. (1999) Functions of the MDM2 oncoprotein. Cell. Mol. Life Sci. 55, 96–107.

    Article  PubMed  CAS  Google Scholar 

  32. Freedman, D. A. and Levine, A. J. (1999) Regulation of p53 protein by MDM2 oncoprotein-Thirty eighth G.H.A. Clowes memorial award lecture. Cancer Res. 59, 1–7.

    PubMed  CAS  Google Scholar 

  33. Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993) MDM2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468.

    PubMed  CAS  Google Scholar 

  34. Perry, M. E., Piette, J., Zawadzki, J. A., Harvey, D., and Levine, A. J. (1993) The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci. USA 90, 11,623–11,627.

    Article  PubMed  CAS  Google Scholar 

  35. Momand, J., Jung, D., Wilczynski, S., and Niland, J. (1998) The MDM2 gene amplification database. Nuc. Acids Res. 26, 3453–3459.

    Article  CAS  Google Scholar 

  36. Watanabe, T., Hotta, T., Ichikawa, A., Kinoshita, T., Nagai, H., and Uchida, T. (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84, 3158–3165.

    PubMed  CAS  Google Scholar 

  37. Landers, J. E., Haines, D. S., Strauss, J. F., and George, D. L. (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9, 2745–2750.

    PubMed  CAS  Google Scholar 

  38. Landers, J. E., Cassel, S. L., and George, D. L. (1997) Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stablized wild-type p53 protein. Cancer Res. 57, 3562–3568.

    PubMed  CAS  Google Scholar 

  39. Dorigo, O., Turla, S. T., Lebedeva, S., and Gjerset, R. A. (1998) Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J. Neurosurg. 88, 535–540.

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen, L. L. and Maneval, D. C. (1998) p53 tumor suppressor gene therapy for cancer. Cancer Gene Ther. 5, 52–63.

    PubMed  CAS  Google Scholar 

  41. Bottger, A., Bottger, V., Sparks, A., Liu, W. L., Howard, S. F., and Lane, D. P. (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869.

    Article  PubMed  CAS  Google Scholar 

  42. Midgley, C. A. and Lane, D. P. (1997) P53 protein stability in tumor cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15, 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  43. Arriola, E. L., Lopez, A. R., and Chresta, C. M. (1999) Differential regulation of p21/waf-1/cip-1 and mdm2 by etoposide: etoposide inhibits the p53-mdm2 autoregulatory feedback loop. Oncogene 18, 1081–1091.

    Article  PubMed  CAS  Google Scholar 

  44. Chen, L., Agrawal, S., Zhou, W., Zhang, R., and Chen, J. (1998) Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Sci. USA 95, 195–200.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, L., Lu, W., Agrawal, S., Zhou, W. Zhang, R., and Chen, J. (1999) Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol. Med. 5, 21–34.

    PubMed  CAS  Google Scholar 

  46. Wang, H., Oliver, P., Zeng, X., et al. (1999) MDM2 oncogene as a target for cancer therapy: an antisense approach. Intl. J. Oncol. 15, 653–660.

    CAS  Google Scholar 

  47. Cai, Q., Lindsey, J. R., and Zhang, R. (1997) Regression of human colon cancer xenografts in SCID mice following oral administration of water-insoluble camptothecins, natural product topoisomerase I inhibitors. Int. J. Oncol. 10, 953–960.

    CAS  Google Scholar 

  48. Zhang, R., Li, Y., Cai, Q., Liu, T., Sun, H., and Chambless, B. (1998) Preclinical pharmacology of the natural product anticancer agent 10-hydroxycamptothecin, an inhibitor of topoisomerase I. Cancer Chemother. Pharm. 41, 257–267.

    Article  CAS  Google Scholar 

  49. Takimoto, C. H. and Arbuck, S. G. (1996) The camptothecins, in Cancer Chemotherapy and Biotherapy (Chabner, B. A. and Longo, D. L., eds.), Philadelphia: Lippincott Raven Publishers, pp. 463–484.

    Google Scholar 

  50. Liu, W. and Zhang, R. (1998) Upregulation of p21/WAF1/CIP1 in human breast cancer cell lines MCF-7 and MDA-MB-468 undergoing apoptosis induced by natural product anticancer agents 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. Int. J. Oncol. 12, 793–804.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, R., Wang, H. (2003). Antisense Oligonucleotide Inhibitors of MDM2 Oncogene Expression. In: Buolamwini, J.K., Adjei, A.A. (eds) Novel Anticancer Drug Protocols. Methods in Molecular Medicine, vol 85. Humana Press. https://doi.org/10.1385/1-59259-380-1:205

Download citation

  • DOI: https://doi.org/10.1385/1-59259-380-1:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-963-6

  • Online ISBN: 978-1-59259-380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics