Advertisement

Gene Arrays and Proteomics

A Primer
  • Lionel Moulédous
  • Howard B. Gutstein
Part of the Methods in Molecular Biology™ book series (MIMM, volume 84)

Abstract

In recent years, molecular biology has increasingly focused on how cellular effectors are modulated by the environment and, in turn, modulate each other to control cellular functions. In the opioid field, we concern ourselves both with signaling mechanisms within cells and the functions of neural circuitry in mediating the behavioral effects of opioids. All of these mechanisms identified to date have proven to be extremely complex, suggesting that behavioral outcomes mediated by opioids are dependent on the interactions of multiple gene products. Opioid-mediated behavioral outcomes such as tolerance, dependence, and addiction may reflect problems in the regulation of complex biological and emotional functions. From this, it follows that slight alterations in the expression or function of individual genes that still fall within the “normal” range could lead to pathological effects or behaviors. Genetic polymorphisms cause changes in the coding and regulatory regions of genes. Thus, in addition to changes in levels of protein expression, encoded proteins may have slightly different functions or undergo differential regulation in cells.

Keywords

Gene Array Gene Chip MALDI Mass Spectrometry mRNA Pool Laser Confocal Scanning Microscope System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ramsay, G. (1998) DNA chips: State-of-the-art. Nature Biotechnol. 16, 40–44.CrossRefGoogle Scholar
  2. 2.
    Watson, S. J. and Akil, H. (1999) Gene chips and arrays revealed: a primer on their power and their uses. Biol. Psych. 45, 533–543.CrossRefGoogle Scholar
  3. 3.
    Marshall, A. and Hodgson, J. (1998) DNA chips: An array of possibilities. Nature Biotechnol. 16, 27–31.CrossRefGoogle Scholar
  4. 4.
    Graves, D. J. (1999) Powerful tools for genetic analysis come of age. Tibtech 17, 127–134.Google Scholar
  5. 5.
    Zirlinger, M., Kreiman, G., and Anderson, D. J. (2001) Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc. Natl. Acad. Sci. USA 98, 5270–5275.PubMedCrossRefGoogle Scholar
  6. 6.
    Sandberg, R., Yasuda, R., Pankratz, D., Carter, T., Del Rio, J., Wodicka, L., et al. (2000) Regional and stran-specific gene expression mapping in the adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 11,038–11,043.PubMedCrossRefGoogle Scholar
  7. 7.
    Hess, K. R., Zhang, W., Baggerly, K. A., Stivers, D. N., and Coombes, K. R. (2001) Microarrays: handling the deluge of data and extracting reliable information. Trends Biotechnol. 19, 463–468.PubMedCrossRefGoogle Scholar
  8. 8.
    Wu, T. (2001) Analysing gene expression data from DNA microarrays to identify candidate genes. J. Pathol. 195, 53–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Brazma, A. and Vilo, J. (2000) Gene expression data analysis. FEBS Lett. 480, 17–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, M., Kuo, F., Whitmore, G., and Sklar, J. (200) Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97, 9834–9839.Google Scholar
  11. 11.
    Livesey, F. and Hunt, S. (1996) Identifying changes in gene expression in the nervous system: mRNA differential display. Trends Neurosci. 19, 84–88.PubMedCrossRefGoogle Scholar
  12. 12.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.PubMedCrossRefGoogle Scholar
  13. 13.
    Velculescu, V. E. (1999) Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes—SAGE and its use in global gene expression analysis. Science 286, 1491–1492.PubMedCrossRefGoogle Scholar
  14. 14.
    Sagerstrom, C. G., Sun, B. I., and Sive, H. L. (1997). Subtractive cloning: past, present, and future. Ann. Rev. Biochem. 66, 751–783.PubMedCrossRefGoogle Scholar
  15. 15.
    Williams, K. L. and Hochstrasser, D. F. (1997) Introduction to the proteome. In Proteome Research: New Frontiers in Functional Genomics (Wilkins, M. R., Williams, K. L., Appel, R. D. and Hochstrasser, D. F., eds.), Springer, Berlin pp. 1–12.Google Scholar
  16. 16.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.PubMedGoogle Scholar
  17. 17.
    Anderson, L. and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537.PubMedCrossRefGoogle Scholar
  18. 18.
    Chambers, G., Lawrie, L., Cash, P., and Murray, G. I. (2000) Proteomics: a new approach to the study of disease. J. Pathol. 192, 280–288.PubMedCrossRefGoogle Scholar
  19. 19.
    Godovac-Zimmermann, J. and Brown, L. R. (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom. Rev. 20, 1–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Naaby-Hansen, S., Waterfield, M. D., and Cramer, R. (2001) Proteomics—post-genomic cartography to understand gene function. Trends Pharmacol. Sci. 22, 376–384.PubMedCrossRefGoogle Scholar
  21. 21.
    Herbert, B. (1999) Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20, 660–663.PubMedCrossRefGoogle Scholar
  22. 22.
    Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.PubMedCrossRefGoogle Scholar
  23. 23.
    Molloy, M. P., Herbert, B. R., Williams, K. L., and Gooley, A. A. (1999) Extraction of Escherichia coli proteins with organic solvents prior to two-dimensional electrophoresis. Electrophoresis 20, 701–704.PubMedCrossRefGoogle Scholar
  24. 24.
    Hastie, N. D. and Bishop, J. O. (1976) The expression of three abundance classes of messenger RNA in mouse tissues. Cell 9, 761–774.PubMedCrossRefGoogle Scholar
  25. 25.
    Herbert, B. R., Harry, J. L., Packer, N. H., Gooley, A. A., Pedersen, S. K., and Williams, K. L. (2001) What place for polyacrylamide in proteomics? Trends Biotechnol. 19, S3–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Corthals, G. L., Wasinger, V. C., Hochstrasser, D. F., and Sanchez, J. C. (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115.PubMedCrossRefGoogle Scholar
  27. 27.
    Pasquali, C., Fialka, I. and Huber, L. A. (1999) Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B. Biomed. Sci. Appl. 722, 89–102.PubMedCrossRefGoogle Scholar
  28. 28.
    Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C., et al. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837–844.PubMedCrossRefGoogle Scholar
  29. 29.
    Klose, J. and Kobalz, U. (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059.PubMedCrossRefGoogle Scholar
  30. 30.
    Herbert, B. and Righetti, P. G. (2000) A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis 21, 3639–3648.PubMedCrossRefGoogle Scholar
  31. 31.
    Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Natl. Neurosci. 3, 661–669.CrossRefGoogle Scholar
  32. 32.
    Issaq, H. J. (2001) The role of separation science in proteomics research. Electrophoresis 22, 3629–3638.PubMedCrossRefGoogle Scholar
  33. 33.
    Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.PubMedCrossRefGoogle Scholar
  34. 34.
    Moseley, M. A. (2001) Current trends in differential expression proteomics: isotopically coded tags. Trends Biotechnol. 19, S10–16.PubMedCrossRefGoogle Scholar
  35. 35.
    Lauber, W. M., Carroll, J. A., Dufield, D. R., Radabaugh, M. R., and Malone, J. P. (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22, 906–918.PubMedCrossRefGoogle Scholar
  36. 36.
    Yan, J. X., Harry, R. A., Spibey, C., and Dunn, M. J. (2000) Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis 21, 3657–3665.PubMedCrossRefGoogle Scholar
  37. 37.
    Miller, M. D., Jr., Acey, R. A., Lee, L. Y., and Edwards, A. J. (2001) Digital imaging considerations for gel electrophoresis analysis systems. Electrophoresis 22, 791–800.PubMedCrossRefGoogle Scholar
  38. 38.
    Chalmers, M. J. and Gaskell, S. J. (2000) Advances in mass spectrometry for proteome analysis. Curr. Opin. Biotechnol. 11, 384–390.PubMedCrossRefGoogle Scholar
  39. 39.
    Yates, J. R., 3rd. (1998) Mass spectrometry and the age of the proteome. J. Mass. Spectrom. 33, 1–19.PubMedCrossRefGoogle Scholar
  40. 40.
    Fenyo, D. (2000) Identifying the proteome: software tools. Curr. Opin. Biotechnol. 11, 391–395.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Lionel Moulédous
    • 1
  • Howard B. Gutstein
    • 1
  1. 1.Departments of Anesthesiology and Molecular GeneticsThe University of Texas MD Anderson Cancer CenterHouston

Personalised recommendations