Quantitative Single-Cell RT-PCR for Opioid Receptors and Housekeeping Genes

  • Seth C. Silbert
Part of the Methods in Molecular Biology™ book series (MIMM, volume 84)


When the polymerase chain reaction (PCR) is applied to individual cells, variations in the efficiencies of cell harvest, reverse transcription (RT), and PCR confuse the interpretation of results. This chapter demonstrates three refinements of the standard RT-PCR strategy, which together provide explicit measurements of single-cell gene expression in terms of mRNA molecules per cell. (1) The entire cell is harvested and reverse transcribed. (2) Mutant sequences, included as internal controls, explicitly monitor the efficiency of RT and PCR in each reaction tube. (3) Multiple targets are independently amplified from each cell, including a constitutively expressed housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GPD, GAPDH), confirming successful harvest and reverse transcription of each cell. Amplification of GPD, as well as two opioid receptor, and two peptide precursor sequences illustrates this approach. In the case of GPD, RT yields one amplifiable cDNA molecule for every 2–3 mRNA molecules. Sensory neurons maintain GPD mRNA in the nanomolar range, but with considerable variability (1.03±0.61 nM). Competitive PCR can be applied to virtually any message sequence. In neurons expressing the sequence, message levels are explicitly quantified. In neurons not expressing the sequence, the absence of message is convincingly demonstrated. As few as 2–5 cDNA molecules are routinely detected. cDNA levels are quantified to within a factor of two, typically over a 100-fold range.


Polymerase Chain Reaction Polymerase Chain Reaction Product Cell Harvest cDNA Concentration cDNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lambolez, B., Audinat, E., Bochet, P., Crepel, F., and Rossier, J. (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258.PubMedCrossRefGoogle Scholar
  2. 2.
    Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R., et al. (1992) Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89, 3010–3014.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, M. A. and O’Dowd, D. K. (1994) Cell-specific regulation of agrin RNA splicing in the chick ciliary ganglion. Neuron 12, 795–804.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Dowd, D. K., Gee, J. R., and Smith, M. A. (1995) Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J. Neurosci. 15, 4005–4012.Google Scholar
  5. 5.
    Sucher, N. J. and Deitcher, D. L. (1995) PCR and patch-clamp analysis of single neurons. Neuron 14, 1095–1100.PubMedCrossRefGoogle Scholar
  6. 6.
    Becker-Andre, M. and Hahlbrock, K. (1989) Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucl. Acid. Res. 17, 9437–9446.CrossRefGoogle Scholar
  7. 7.
    Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 2725–2729.PubMedCrossRefGoogle Scholar
  8. 8.
    Gilliland, G., Perrin, S., and Bunn, H. F. (1990) Competitive PCR for quantitation of mRNA, in PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic/Harcourt Brace Jovanovich, San Diego, CA, pp. 60–69.Google Scholar
  9. 9.
    Silbert, S. C., Beacham, D. W., and McCleskey, E. W. (2003) Quantitative single cell differences in μ-opioid receptor mRNA distinguish myelinated and unmyeli-nated nociceptors. J. Neurosci. 23, 34–42.PubMedGoogle Scholar
  10. 10.
    Barnes, W. M. (1992) The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene 112, 29–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Barnes, W. M. (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220.PubMedCrossRefGoogle Scholar
  12. 12.
    Taddese, A., Nah, S. Y., and McCleskey, E. W. (1995) Selective inhibition of small nociceptors. Science 270, 1366–1369.PubMedCrossRefGoogle Scholar
  13. 13.
    Eckert, S. P., Taddese, A., and McCleskey, E. W. (1997) Isolation and culture of rat sensory neurons having distinct sensory modality. J. Neurosci. Meth. 77, 183–190.CrossRefGoogle Scholar
  14. 14.
    Tso, J. Y., Sun, X. H., Kao, T. H., Reece, K. S. and Wu, R. (1985) Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucl. Acid Res. 13, 2485–2502.CrossRefGoogle Scholar
  15. 15.
    Thompson, R. C., Mansour, A., Akil, H., and Watson, S. J. (1993) Cloning and pharmalogical characterization of a rat opioid receptor. Neuron 11, 903–913.PubMedCrossRefGoogle Scholar
  16. 16.
    Bunzow, J. R., Zhang, G., Bouvier, C., Saez, C., Ronnekleiv, O. K., Kell, M. J., et al. (1995) Characterization and distribution of a cloned rat μ-opioid receptor. J. Neurochem. 64, 14–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Meng, F., Xie, G.-X., Thompson, R. C., Mansour, A., Goldstein, A., Watson, S. J., et al. (1993) Cloning and pharmacological characterization of a rat κ opioid receptor. Proc. Natl. Acad. Sci. USA 90, 9954–9958.PubMedCrossRefGoogle Scholar
  18. 18.
    Hjorth, S. A., Thirstrup, K., Grandy, D. K., and Schwartz, T. W. (1995) Analysis of selective binding epitopes for the kappa-opioid receptor antagonist norbinaltorphimine. Mol. Pharm. 47, 1089–1094.Google Scholar
  19. 19.
    Krause, J. E., Chirgwin, J. M., Carter, M. S., Xu, Z. S., and Hershey, A. D. (1987) Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc. Natl. Acad. Sei. USA 84, 881–885.CrossRefGoogle Scholar
  20. 20.
    MacDonald, M. R., McCourt, D. W., and Krause, J. E. (1988) Posttranslational procesing of α-, β-, and γ-preprotachykinins. Cell-free translation and early posttranslational processing events. J. Biol. Chem. 263, 15,176–15,183.PubMedGoogle Scholar
  21. 21.
    Montminy, M. R., Low, M. J., Tapia-Arancibia, L., Reichlin, S., Mandel, G., and Goodman, R. H. (1986) Cyclic AMP regulates somatostatin mRNA accumulation in primary diencephalic cultures and in transfected fibroblast cells. J. Neurosci. 6, 1171–1176.PubMedGoogle Scholar
  22. 22.
    Kyrozis, A. and Reichling, D. B. (1995) Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J. Neurosci. Meth. 57, 27–35.CrossRefGoogle Scholar
  23. 23.
    Tajima, Y., Ono, K., and Akaike, A. N. (1996) Perforated patch-clamp recording in cardiac myocytes using cation-selective ionophore gramicidin. Am. J. Physiol. 271, C524–C532.PubMedGoogle Scholar
  24. 24.
    Rychlik, W., Spencer, W. J., Rhoads, R. E. (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucl. Acid. Res. 18, 6409–6412.CrossRefGoogle Scholar
  25. 25.
    Pan, Y.-X., Xu, J., Bolan, E., Abbadie, C, Chang, A., Zuckerman, A., et al. (1999) Identification and characterization of three new alternatively spliced μ-opioid receptor isoforms. Mol. Pharmacol. 56, 396–403.PubMedGoogle Scholar
  26. 26.
    Ercolani, L., Florence, B., Denaro, M., and Alexander, M. (1988) Isolation and complete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J. Biol. Chem. 263, 15,335–15,341.PubMedGoogle Scholar
  27. 27.
    Baldino, F. J., Chesselet, M.-F., and Lewis, M. E. (1989) High-resolution in situ hybridization histochemistry. Meth. Enzymol. 168, 761–777.PubMedCrossRefGoogle Scholar
  28. 28.
    Longo, M. C, Beringer, M. S., and Hartley, J. L. (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93, 125–128.PubMedCrossRefGoogle Scholar
  29. 29.
    Heid, C. A., Stevens, J., Livak K. J., and Williams, P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.PubMedCrossRefGoogle Scholar
  30. 30.
    Tkatch, T., Baranauskas, G., and Surmeier, D. J. (2000) Kv4.2 mRNA abundance and A-type K(+) current amplitude are linearly related in basal ganglia and basal forebrain neurons. J. Neurosci. 20, 579–588PubMedGoogle Scholar
  31. 31.
    Matyas, J. R., Dingqiu, H., and Adams, M. E. (1999) A comparison of various “housekeeping” probes for northern analysis of normal and osteoarthritic articular cartilage RNA. Connect. Tiss. Res. 40, 163–172.CrossRefGoogle Scholar
  32. 32.
    Suzuki, T., Higgins, P. J., and Crawford, D. R. (2000) Control selection for RNA quantitation. Biotechniques 29, 332–337.PubMedGoogle Scholar
  33. 33.
    Stürzenbaum, S. R. and Kille, P. (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp. Biochem. Physiol. Pt. B 130, 281–289.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Seth C. Silbert

There are no affiliations available

Personalised recommendations