Skip to main content

Superantigens

Structure, Function, and Diversity

  • Protocol
Superantigen Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 214))

  • 432 Accesses

Abstract

Bacterial superantigens are potent T-cell stimulatory protein molecules produced by Staphylococcus aureus and Streptococcus pyogenes 1. Their function in the microbe appears primarily to debilitate the host sufficiently through their effects on cells of the immune system to permit the causation of disease (2). Their superantigenic activity can be attributed to their ability to bind to both major histocompatibility complex (MHC) class II molecules and T cell receptors by forming a trimolecular complex (1). Unlike conventional antigens they are not processed internally by antigen presenting cells (APC), and are thus not displayed as peptide antigen in the peptide-binding groove of the MHC class II molecule. Superantigens bind to APCs on the outside of MHC class II molecule and to T cells via the external face of the T-cell receptor (TCR) Vβ element (see Fig. 1). Each superantigen interacts with a specific Vβ region of the TCR, stimulating a large fraction of T cells (for example, up to 10% of resting T cells) (3).

Schematic representation illustrating the differences between conventional peptide antigen presentation and superantigen presentation to MHC class II and TCRs: Left to right, conventional antigen is processed by the APC and displayed as discrete peptide fragments within the peptide binding groove of MHC class II molecules. Interaction occurs between TCR and MHC class II molecule through two possible modes: 1) superantigens bind to the solvent exposed face of the MHC class II molecule (α1) via its generic site, forming a bridge between TCR (Vβ) and MHC class II molecule; 2) Interaction also occurs between TCR Vα and MHC class II molecule involving the β-chain (β1) where the superantigen binds to MHC class II molecule via a bridging zinc atom. In both cases the MHC class II-associated antigenic peptide has been shown to influence T-cell recognition of superantigen/MHC class II molecule complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marrack, P. and Kappler, J. (1990) The staphylococcal enterotoxins and their relatives. Science 248, 705–711.

    PubMed  CAS  Google Scholar 

  2. Kotzin, B. L., Leung, D. Y., Kappler, J., and Marrack, P. (1993) Superantigens and their potential role in human disease. Adv. Immunol. 54, 99–166.

    PubMed  CAS  Google Scholar 

  3. White, J., Herman, A., Pullen, A. M., Kubo, R., Kappler, J. W., and Marrack, P. (1989) The Vβ-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56, 27–35.

    PubMed  CAS  Google Scholar 

  4. Papageorgiou, A. C. and Acharya, K. R. (2000) Microbial superantigens: from structure to function. Trends Microbiol. 8, 369–375.

    PubMed  CAS  Google Scholar 

  5. Papageorgiou, A. C. and Acharya, K. R. (1997) Superantigens as immunomodulators: recent structural insights. Structure 5, 991–996.

    PubMed  CAS  Google Scholar 

  6. Cole, B. C., Knudtson, K. L., Oliphant, A., Sawitzke, A. D., Pole, A., Manohar, M., et al. (1996) The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. J. Exp. Med. 183, 1105–1110.

    PubMed  CAS  Google Scholar 

  7. Huber, B. T., Hsu, P. N., and Sutkowski, N. (1996) Virus-encoded superantigens. Microbiol. Rev. 60, 473–82.

    PubMed  CAS  Google Scholar 

  8. Huber, B. T. (1995) The role of superantigens in virus infection. J. Clin. Immunol. 15, 22S–25S.

    PubMed  CAS  Google Scholar 

  9. Hovde, C. J., Marr, J. C., Hoffmann, M. L., Hackett, S. P., Chi, Y. I., Crum, K. K., et al. (1994) Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol. Microbiol. 13, 897–909.

    PubMed  CAS  Google Scholar 

  10. Kline, J. B. and Collins, C. M. (1997) Analysis of the interaction between the bacterial superantigen streptococcal pyrogenic exotoxin A (SpeA) and the human T-cell receptor. Mol. Microbiol. 24, 191–202.

    PubMed  CAS  Google Scholar 

  11. Avena, R. M. and Bergdoll, M. S. (1967) Purification and some physicochemical properties of enterotoxin C, Staphylococcus aureus strain 361. Biochemistry 6, 1474–1480.

    PubMed  CAS  Google Scholar 

  12. Chu, F. S., Thadhani, K., Schantz, E. J., and Bergdoll, M. S. (1966) Purification and characterization of staphylococcal enterotoxin A. Biochemistry 5, 3281–3289.

    PubMed  CAS  Google Scholar 

  13. Ende, I. A., Terplan, G., Kickhofen, B., and Hammer, D. K. (1983) Chromatofocusing: a new method for purification of staphylococcal enterotoxins B and C1. Appl. Environ. Microbiol. 46, 1323–1330.

    PubMed  CAS  Google Scholar 

  14. Reynolds, D., Tranter, H. S., Sage, R., and Hambleton, P. (1988) Novel method for purification of staphylococcal enterotoxin A. Appl. Environ. Microbiol. 54, 1761–1765.

    PubMed  CAS  Google Scholar 

  15. Robern, H., Stavric, S., and Dickie, N. (1975) The application of QAE-Sephadex for the purification of two staphylococcal enterotoxins. I. Purification of enterotoxin C2. Biochim. Biophys. Acta 393, 148–158.

    PubMed  CAS  Google Scholar 

  16. Brehm, R. D., Tranter, H. S., Hambleton, P., and Melling, J. (1990) Large-scale purification of staphylococcal enterotoxins A, B, and C2 by dye ligand affinity chromatography. Appl. Environ. Microbiol. 56, 1067–1072.

    PubMed  CAS  Google Scholar 

  17. Proft, T., Moffatt, S. L., Berkahn, C. J., and Fraser, J. D. (1999) Identification and characterization of novel superantigens from Streptococcus pyogenes. J. Exp. Med. 189, 89–102.

    PubMed  CAS  Google Scholar 

  18. Sundberg, E. and Jardetzky, T. S. (1999) Structural basis for HLA-DQ binding by the streptococcal superantigen SSA. Nat. Struct. Biol. 6, 123–129.

    PubMed  CAS  Google Scholar 

  19. Munson, S. H., Tremaine, M. T., Betley, M. J., and Welch, R. A. (1998) Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect. Immun. 66, 3337–3348.

    PubMed  CAS  Google Scholar 

  20. Fagin, U., Hahn, U., Grotzinger, J., Fleischer, B., Gerlach, D., Buck, F., et al. (1997) Exclusion of bioactive contaminations in Streptococcus pyogenes erythrogenic toxin A preparations by recombinant expression in Escherichia coli. Infect. Immun. 65, 4725–4733.

    CAS  Google Scholar 

  21. Schlievert, P. M. (1988) Immunochemical assays for toxic shock syndrome toxin-1. Methods Enzymol. 165, 339–344.

    PubMed  CAS  Google Scholar 

  22. Parsonnet, J., Hickman, R. K., Eardley, D. D., and Pier, G. B. (1985) Induction of human interleukin-1 by toxic-shock-syndrome toxin-1. J. Infect. Dis. 151, 514–522.

    PubMed  CAS  Google Scholar 

  23. Sriskandan, S., Moyes, D., Buttery, L. K., Krausz, T., Evans, T. J., Polak, J., and Cohen, J. (1996) Streptococcal pyrogenic exotoxin A release, distribution, and role in a murine model of fasciitis and multiorgan failure due to Streptococcus pyogenes. J. Infect. Dis. 173, 1399–1407.

    PubMed  CAS  Google Scholar 

  24. Sriskandan, S., Moyes, D., and Cohen, J. (1996) Detection of circulating bacterial superantigen and lymphotoxin-α in patients with streptococcal toxic-shock syndrome. Lancet 348, 1315–1316.

    PubMed  CAS  Google Scholar 

  25. Jardetzky, T. S., Brown, J. H., Gorga, J. C., Stern, L. J., Urban, R. G., Chi, Y. I., et al. (1994) Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718.

    PubMed  CAS  Google Scholar 

  26. Li, Y., Li, H., Dimasi, N., McCormick, J. K., Martin, R., Schuck, P., et al. (2001) Crystal structure of a superantigen bound to the highaffinity, zinc-dependent site on MHC class II. Immunity 14, 93–104.

    PubMed  CAS  Google Scholar 

  27. Petersson, K., Hakansson, M., Nilsson, H., Forsberg, G., Svensson, L. A., Liljas, A., and Walse, B. (2001) Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J. 20, 3306–3312.

    PubMed  CAS  Google Scholar 

  28. Papageorgiou, A. C., Acharya, K. R., Shapiro, R., Passalacqua, E. F., Brehm, R. D., and Tranter, H. S. (1995) Crystal structure of the superantigen enterotoxin C2 from Staphylococcus aureus reveals a zinc-binding site. Structure 3, 769–779.

    PubMed  CAS  Google Scholar 

  29. Papageorgiou, A. C., Collins, C. M., Gutman, D. M., Kline, J. B., O’Brien, S. M., Tranter, H. S., and Acharya, K. R. (1999) Structural basis for the recognition of superantigen streptococcal pyrogenic exotoxin A (SpeA1) by MHC class II molecules and T-cell receptors. EMBOJ. 18, 9–21.

    CAS  Google Scholar 

  30. Kim, J., Urban, R. G., Strominger, J. L., and Wiley, D. C. (1994) Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science 266, 1870–1874.

    PubMed  CAS  Google Scholar 

  31. Wen, R., Broussard, D. R., Surman, S., Hogg, T. L., Blackman, M. A., and Woodland, D. L. (1997) Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Eur. J. Immunol. 27, 772–781.

    PubMed  CAS  Google Scholar 

  32. Fraser, J. D., Urban, R. G., Strominger, J. L., and Robinson, H. (1992) Zinc regulates the function of two superantigens. Proc. Natl. Acad. Sci. USA 89, 5507–5511.

    PubMed  CAS  Google Scholar 

  33. Abrahmsen, L., Dohlsten, M., Segren, S., Björk, P., Jonsson, E., and Kalland, T. (1995) Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 14, 2978–2986.

    PubMed  CAS  Google Scholar 

  34. Tiedemann, R. E., Urban, R. J., Strominger, J. L., and Fraser, J. D. (1995) Isolation of HLA-DR1. (staphylococcal enterotoxin A)2 trimers in solution. Proc. Natl. Acad. Sci. USA 92, 12,156–12,159.

    PubMed  CAS  Google Scholar 

  35. Sundstrom, M., Abrahmsen, L., Antonsson, P., Mehindate, K., Mourad, W., and Dohlsten, M. (1996) The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J. 15, 6832–6840.

    PubMed  CAS  Google Scholar 

  36. Roussel, A., Anderson, B. F., Baker, H. M., Fraser, J. D., and Baker, E. N. (1997) Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nat. Struct. Biol. 4, 635–643.

    PubMed  CAS  Google Scholar 

  37. Hakansson, M., Petersson, K., Nilsson, H., Forsberg, G., Björk, P., Antonsson, P., and Svensson, L. A. (2000) The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TCR molecules. J. Mol. Biol. 302, 527–537.

    PubMed  CAS  Google Scholar 

  38. Li, H., Llera, A., and Mariuzza, R. A. (1998) Structure-function studies of T-cell receptor-super antigen interactions. Immunol Rev 163, 177–186.

    PubMed  CAS  Google Scholar 

  39. Swaminathan, S., Furey, W., Pletcher, J., and Sax, M. (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359, 801–806.

    PubMed  CAS  Google Scholar 

  40. Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., et al. (1996) Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384, 188–192.

    PubMed  CAS  Google Scholar 

  41. Kappler, J. W., Herman, A., Clements, J., and Marrack, P. (1992) Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 175, 387–396.

    PubMed  CAS  Google Scholar 

  42. Leder, L., Llera, A., Lavoie, P. M., Lebedeva, M. I., Li, H., Sekaly, R. P., et al. (1998) A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II. J. Exp. Med. 187, 823–833.

    PubMed  CAS  Google Scholar 

  43. Deringer, J. R., Ely, R. J., Stauffacher, C. V., and Bohach, G. A. (1996) Subtype-specific interactions of type C staphylococcal enterotoxins with the T-cell receptor. Mol. Microbiol. 22, 523–534.

    PubMed  CAS  Google Scholar 

  44. Hudson, K. R., Robinson, H., and Fraser, J. D. (1993) Two adjacent residues in staphylococcal enterotoxins A and E determine T cell receptor Vβ specificity. J. Exp. Med. 177, 175–184.

    PubMed  CAS  Google Scholar 

  45. Acharya, K. R., Passalacqua, E. F., Jones, E. Y., Harlos, K., Stuart, D. I., Brehm, R. D., and Tranter, H. S. (1994) Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 367, 94–97.

    PubMed  CAS  Google Scholar 

  46. Deresiewicz, R. L., Woo, J., Chan, M., Finberg, R. W., and Kasper, D. L. (1994) Mutations affecting the activity of toxic shock syndrome toxin-1. Biochemistry 33, 12,844–12,851.

    PubMed  CAS  Google Scholar 

  47. Bavari, S., and Ulrich, R. G. (1995) Staphylococcal enterotoxin A and toxic shock syndrome toxin compete with CD4 for human major histocompatibility complex class II binding. Infect. Immun. 63, 423–429.

    PubMed  CAS  Google Scholar 

  48. Krakauer, T. (1995) Differential inhibitory effects of interleukin-10, interleukin-4, and dexamethasone on staphylococcal enterotoxin-induced cytokine production and T cell activation. J. Leukoc. Biol. 57, 450–454.

    PubMed  CAS  Google Scholar 

  49. Germain, R. N. (1997) T-cell signaling: the importance of receptor clustering. Curr. Biol. 7, 640–644.

    Google Scholar 

  50. Woodland, D. L., Wen, R., and Blackman, M. A. (1997) Why do superantigens care about peptides? Immunol. Today 18, 18–22.

    CAS  Google Scholar 

  51. Herman, A., Kappler, J. W., Marrack, P., and Pullen, A. M. (1991) Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9, 745–772.

    PubMed  CAS  Google Scholar 

  52. Picker, L. J., Singh, M. K., Zdraveski, Z., Treer, J. R., Waldrop, S. L., Bergstresser, P. R., and Maino, V. C. (1995) Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86, 1408–1419.

    PubMed  CAS  Google Scholar 

  53. Mehta, B. A. and Maino, V. C. (1997) Simultaneous detection of DNA synthesis and cytokine production in staphylococcal enterotoxin B activated CD4+T lymphocytes by flow cytometry. J. Immunol. Methods 208, 49–59.

    PubMed  CAS  Google Scholar 

  54. Bernal, A., Proft, T., Fraser, J. D., and Posnett, D. N. (1999) Superantigens in human disease. J. Clin. Immunol. 19, 149–157.

    PubMed  CAS  Google Scholar 

  55. Hauser, A. R., Stevens, D. L., and Schlievert, P. M. (1991) Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes islates associated with toxic shock-like syndrome. J. Clin. Microbiol. 29, 1562–1567.

    PubMed  CAS  Google Scholar 

  56. Schlievert, P. M., Jablonski, L. M., Roggiani, M., Sadler, I., Callantine, S., Mitchell, D. T., et al. (2000) Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect. Immun. 68, 3630–3634.

    PubMed  CAS  Google Scholar 

  57. Harris, T. O. and Betley, M. J. (1995) Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect. Immun. 63, 2133–2140.

    PubMed  CAS  Google Scholar 

  58. Hoffman, M., Tremaine, M., Mansfield, J., and Betley, M. (1996) Biochemical and mutational analysis of the histidine residues of staphylococcal enterotoxin A. Infect. Immun. 64, 885–890.

    PubMed  CAS  Google Scholar 

  59. Alber, G., Hammer, D. K., and Fleischer, B. (1990) Relationship between enterotoxic-and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144, 4501–4506.

    PubMed  CAS  Google Scholar 

  60. Spero, L. and Morlock, B. A. (1978) Biological activities of the peptides of Staphylococcal enterotoxin C formed by limited tryptic hydrolysis. J. Biol. Chem. 253, 8787–8791.

    PubMed  CAS  Google Scholar 

  61. Friedman, S. M., Tumang, J. R., and Crow, M. K. (1993) Microbial superantigens as etiopathogenic agents in autoimmunity. Rheum. Dis. Clin. North Am. 19, 207–222.

    PubMed  CAS  Google Scholar 

  62. Hohlfeld, R., Toyka, K. V., Heininger, K., Grosse-Wilde, H., and Kalies, I. (1984) Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature 310, 244–246.

    PubMed  CAS  Google Scholar 

  63. Wucherpfennig, K. W., Weiner, H. L., and Hafler, D. A. (1991) T-cell recognition of myelin basic protein. Immunol. Today 12, 277–282.

    PubMed  CAS  Google Scholar 

  64. Brocke, S., Hausmann, S., Steinman, L., and Wucherpfennig, K. W. (1998) Microbial peptides and superantigens in the pathogenesis of autoimmune diseases of the central nervous system. Semin. Immunol. 10, 57–67.

    PubMed  CAS  Google Scholar 

  65. Renno, T. and Acha-Orbea, H. (1996) Superantigens in autoimmune diseases: still more shades of gray. Immunol Rev 154, 175–191.

    PubMed  CAS  Google Scholar 

  66. Bremell, T., Lange, S., Holmdahl, R., Ryden, C., Hansson, G. K., and Tarkowski, A. (1994) Immunopathological features of rat Staphylococcus aureus arthritis. Infect. Immun. 62, 2334–2344.

    PubMed  CAS  Google Scholar 

  67. Bremell, T. and Tarkowski, A. (1995) Preferential induction of septic arthritis and mortality by superantigen-producing staphylococci. Infect. Immun. 63, 4185–4187.

    PubMed  CAS  Google Scholar 

  68. Brocke, S., Gaur, A., Piercy, C., Gautam, A., Gijbels, K., Fathman, C. G., and Steinman, L. (1993) Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365, 642–644.

    PubMed  CAS  Google Scholar 

  69. Gaur, A., Fathman, C. G., Steinman, L., and Brocke, S. (1993) SEB induced anergy: modulation of immune response to T cell determinants of myoglobin and myelin basic protein. J. Immunol. 150, 3062–3069.

    PubMed  CAS  Google Scholar 

  70. Soos, J. M., Schiffenbauer, J., Torres, B. A., and Johnson, H. M. (1997) Superantigens as virulence factors in autoimmunity and immunodeficiency diseases. Med. Hypotheses 48, 253–259.

    PubMed  CAS  Google Scholar 

  71. Conrad, B., Weissmahr, R. N., Boni, J., Arcari, R., Schupbach, J., and Mach, B. (1997) A human endogenous retro viral superantigen as candidate autoimmune gene in type I diabetes. Cell 90, 303–313.

    PubMed  CAS  Google Scholar 

  72. Couper, J. J., Kallincos, N., Pollard, A., Honeyman, M., Prager, P., Harrison, L. C., and Rischmueller, M. (2000) Toxic shock syndrome associated with newly diagnosed type I diabetes. J. Paediatr. Child Health 36, 279–282.

    PubMed  CAS  Google Scholar 

  73. Miethke, T., Wahl, C., Holzmann, B., Heeg, K., and Wagner, H. (1993) Bacterial superantigens induce rapid and T cell receptor Vβ selective down-regulation of L-selectin (gp90Mel-14) in vivo. J. Immunol. 151, 6777–6782.

    PubMed  CAS  Google Scholar 

  74. Miethke, T., Wahl, C., Regele, D., Gaus, H., Heeg, K., and Wagner, H. (1993) Superantigen mediated shock: a cytokine release syndrome. Immunobiology 189, 270–284.

    PubMed  CAS  Google Scholar 

  75. Schlievert, P. M. (1982) Enhancement of host susceptibility to lethal endotoxin shock by staphylococcal pyrogenic exotoxin type C. Infect. Immun. 36, 123–128.

    PubMed  CAS  Google Scholar 

  76. Bohach, G. A. and Schlievert, P. M. (1988) Detection of endotoxin by enhancement with toxic shock syndrome toxin-1 (TSST-1). Methods Enzymol. 165, 302–306.

    PubMed  CAS  Google Scholar 

  77. Parsonnet, J., Gillis, Z. A., Richter, A. G., and Pier, G. B. (1987) A rabbit model of toxic shock syndrome that uses a constant, subcutaneous infusion of toxic shock syndrome toxin 1. Infect. Immun. 55, 1070–1076.

    PubMed  CAS  Google Scholar 

  78. Bergdoll, M. S. (1988) Monkey feeding test for staphylococcal enterotoxin. Methods Enzymol. 165, 324–333.

    PubMed  CAS  Google Scholar 

  79. Bergdoll, M. S. (1966) Immunization of Rhesus monkeys with enterotoxoidB. J. Infect. Dis. 116, 191–196.

    PubMed  CAS  Google Scholar 

  80. Keane, W. F., Gekker, G., Schlievert, P. M., and Peterson, P. K. (1986) Enhancement of endotoxin-induced isolated renal tubular cell injury by toxic shock syndrome toxin 1. Am. J. Pathol. 122, 169–176.

    PubMed  CAS  Google Scholar 

  81. Braun, M. A., Gerlach, D., Hartwig, U. F., Ozegowski, J. H., Romagne, F., Carrel, S., et al. (1993) Stimulation of human T cells by streptococcal &quote;superantigen&quote; erythrogenic toxins (scarlet fever toxins). J. Immunol. 150, 2457–2466.

    PubMed  CAS  Google Scholar 

  82. Kalland, T., Dohlsten, M., Lando, P., et al. (1995) In: Bacterial Superantigens: Structure, Function and Therapeutic Potential (Thibodeau, J. and Sekaly, R.S., eds.). Springer-Verlag, Germany, pp. 234–235.

    Google Scholar 

  83. Hansson, J., Ohlsson, L., Persson, R., Andersson, G., Ilback, N. G., Litton, M. J., et al. (1997) Genetically engineered superantigens as tolerable antitumor agents. Proc. Natl. Acad. Sci. USA 94, 2489–2494.

    PubMed  CAS  Google Scholar 

  84. Litton, M. J., Dohlsten, M., Lando, P. A., Kalland, T., Ohlsson, L., Andersson, J., and Andersson, U. (1996) Antibody-targeted superantigen therapy induces tumor-infiltrating lymphocytes, excessive cytokine production, and apoptosis in human colon carcinoma. Eur. J. Immunol. 26, 1–9.

    PubMed  CAS  Google Scholar 

  85. Dohlsten, M., Lando, P. A., Bjork, P., Abrahmsen, L., Ohlsson, L., Lind, P., and Kalland, T. (1995) Immunotherapy of human colon cancer by antibody-targeted superantigens. Cancer Immunol. Immunother. 41, 162–168.

    PubMed  CAS  Google Scholar 

  86. Dohlsten, M., Hansson, J., Ohlsson, L., Litton, M., and Kalland, T. (1995) Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo. Proc. Natl. Acad. Sci. USA 92, 9791–9795.

    PubMed  CAS  Google Scholar 

  87. Dohlsten, M., Kalland, T., Gunnarsson, P., Antonsson, P., Molander, A., Olsson, J., et al. (1998) Man-made superantigens: Tumor-selective agents for T-cell-based therapy. Adv. Drug Deliv. Rev. 31, 131–142.

    PubMed  Google Scholar 

  88. Ostrand-Rosenberg, S., Pulaski, B. A., Clements, V. K., Qi, L., Pipeling, M. R., and Hanyok, L. A. (1999) Cell-based vaccines for the stimulation of immunity to metastatic cancers. Immunol. Rev. 170, 101–114.

    PubMed  CAS  Google Scholar 

  89. Bavari, S., Dyas, B., and Ulrich, R. G. (1996) Superantigen vaccines: a comparative study of genetically attenuated receptor-binding mutants of staphylococcal enterotoxin A. J. Infect. Dis. 174, 338–345.

    PubMed  CAS  Google Scholar 

  90. Ulrich, R. G., Olson, M. A., and Bavari, S. (1998) Development of engineered vaccines effective against structurally related bacterial superantigens. Vaccine 16, 1857–1864.

    PubMed  CAS  Google Scholar 

  91. Arad, G., Levy, R., Hillman, D., and Kaempfer, R. (2000) Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation [see comments]. Nat. Med. 6, 414–421.

    PubMed  CAS  Google Scholar 

  92. Visvanathan, K., Charles, A., Bannan, J., Pugach, P., Kashfi, K., and Zabriskie, J. B. (2001) Inhibition of bacterial superantigens by peptides and antibodies. Infect. Immun. 69, 875–884.

    PubMed  CAS  Google Scholar 

  93. Lehnert, N. M., Allen, D. L., Allen, B. L., Catasti, P., Shiflett, P. R., Chen, M., et al. (2001) Structure-based design of a bispecific receptor mimic that inhibits T cell responses to a superantigen. Biochemistry 40, 4222–4228.

    PubMed  CAS  Google Scholar 

  94. Redpath, S., Alam, S. M., Lin, C. M., O’Rourke, A. M., and Gascoigne, N. R. (1999) Cutting edge: trimolecular interaction of TCR with MHC class II and bacterial superantigen shows a similar affinity to MHC:peptide ligands. J. Immunol. 163, 6–10.

    PubMed  CAS  Google Scholar 

  95. Sundstrom, M., Hallen, D., Svensson, A., Schad, E., Dohlsten, M., and Abrahmsen, L. (1996) The Co-crystal structure of staphylococcal enterotoxin type A with Zn2+at 2.7 Å resolution. Implications for major histocompatibility complex class II binding. J. Biol. Chem. 271, 32,212–32,216.

    PubMed  CAS  Google Scholar 

  96. Papageorgiou, A. C., Tranter, H. S., and Acharya, K. R. (1998) Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5Å resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J. Mol. Biol. 277, 61–79.

    PubMed  CAS  Google Scholar 

  97. Papageorgiou, A. C., Brehm, R. D., Leonidas, D. D., Tranter, H. S., and Acharya, K. R. (1996) The refined crystal structure of toxic shock syndrome toxin-1 at 2.07 Å resolution. J. Mol. Biol. 260, 553–569.

    PubMed  CAS  Google Scholar 

  98. Earhart, C. A., Vath, G. M., Roggiani, M., Schlievert, P. M., and Ohlendorf, D. H. (2000) Structure of streptococcal pyrogenic exotoxin A reveals a novel metal cluster. Protein Sci. 9, 1847–1851.

    PubMed  CAS  Google Scholar 

  99. Baker, M., Gutman D. M., Papageorgiou A. C., Collins C. M., and Acharya K. R. (2001) Structural features of a zinc binding site in the superantigen streptococcal pyrogenic exotoxin A1 (SpeA1): implications for MHC class II recognition. Protein Sci. 10, 1268–1273.

    PubMed  CAS  Google Scholar 

  100. Proft, T., Moffatt, S. L., Weller, K. D., Paterson, A., Martin, D., and Fraser, J. D. (2000) The streptococcal superantigen SMEZ exhibits wide allelic variation, mosaic structure, and significant antigenic variation. J. Exp. Med. 191, 1765–1776.

    PubMed  CAS  Google Scholar 

  101. Gerlach, D., Fleischer, B., Wagner, M., Schmidt, K., Vettermann, S., and Reichardt, W. (2000) Purification and biochemical characterization of a basic superantigen (SPEX/SMEZ3) from Streptococcus pyogenes. FEMS Microbiol. Lett. 188, 153–163.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Baker, M.D., Ravi Acharya, K. (2003). Superantigens. In: Krakauer, T. (eds) Superantigen Protocols. Methods in Molecular Biology™, vol 214. Humana Press. https://doi.org/10.1385/1-59259-367-4:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-367-4:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-984-1

  • Online ISBN: 978-1-59259-367-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics