Skip to main content

Mineralizing Fibroblast-Colony-Forming Assays

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 80))

Abstract

Bone formation does not lend itself easily to investigation because bone tissue consists of various cell types embedded in a complex extracellular matrix. These cells interact with each other and with the extracellular matrix, and when cell populations are removed from the network they cease to function normally. In the past, bone cell differentiation was studied using histological methods in either whole embryos or organ cultures. Although this has provided much information regarding the temporal and spatial relationships of the various cells, the complexity of organ culture systems does not easily allow one to investigate the molecular mechanisms involved in bone development and mineralization. Cell culture techniques have given us much information regarding the mechanistic aspects of gene regulation and cell signaling in osteoblastic cells, but isolated osteoblasts do not respond to exogenous agents in a similar manner to that observed in vivo (1). Recently a number of in vitro models have been established that re-create discrete elements of the cellular network present in the bone micro-environment. The advantage of these models is that they have reduced complexity compared with organ cultures yet retain osteoblasts and their progenitors at various stages of differentiation, allowing defined aspects of bone formation to be investigated at the cellular and molecular levels. These models are modifications of nodule cultures or fibroblast-colony-forming unit (CFU-f) cultures. In CFU-f cultures, bone marrow cells are cultured at relatively low densities under conditions that allow the individual CFU-f to adhere and proliferate to form colonies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mundy, G. R. (1995) No bones about fluoride. Nat. Med. 1, 1130–1131.

    Article  PubMed  CAS  Google Scholar 

  2. Friedenstein, A. J. (1990) Osteogenic stem cells in the bone marrow. Bone Miner. Res. 7, 243–272.

    Google Scholar 

  3. Maniatopoulos, C., Sodek, J., and Melcher, A. H. (1988) Bone formation in vitro by stromal cells obtained form bone marrow of young rats. Cell Tissue Res. 254, 317–330.

    Article  PubMed  CAS  Google Scholar 

  4. Nefussi, J-R., Boy-Lefevre, M. L., Boolekbache, H., and Forest, N. (1985) Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29, 160–168.

    Article  PubMed  CAS  Google Scholar 

  5. Bellows, C. G., Aubin, J. E., Heersche, J. N. M. and Antosz, M. E. (1986) Mineralised bone nodules formed in vitro from enzymatically released rat calvarial cell populations. Calcif. Tissue Int. 38, 143–154.

    Article  PubMed  CAS  Google Scholar 

  6. Stein, G. S., Lian, J. B. and Owen, T. A. (1990) Relationship of cell growth to the regulation of tissue specific gene expression during osteoblast differentiation. FASEB J. 4, 3111–3123.

    PubMed  CAS  Google Scholar 

  7. Bellows, C. G. and Aubin, J. E. (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvarial cells in vitro. Dev. Biol. 133, 8–13.

    Article  PubMed  CAS  Google Scholar 

  8. Scutt, A. and Bertram, P. (1995) Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from non-adherent to adherent osteoblast precursors. J. Bone Miner. Res. 10, 474–489.

    Article  PubMed  CAS  Google Scholar 

  9. Still, K. and Scutt, A. (2001) Stimulation of CFU-f formation by prostaglandin E2 is mediated in part by its degradation product, prostaglandin A2. Prostaglandins 65, 21–31.

    PubMed  CAS  Google Scholar 

  10. Pitaru, S., Kotov-Emeth, S., Noff, D., Kaffuler, S., and Savion, N. (1993) Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J. Bone Miner. Res. 8, 919–929.

    Article  PubMed  CAS  Google Scholar 

  11. Gronthos, S., Simmons, P. J., Graves, S. E., and Robey, P. G. (2001) Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28, 174–81.

    Article  PubMed  CAS  Google Scholar 

  12. Walsh, S., Jordan, G. R., Jefferiss, C., Stewart, K., and Beresford, J. N. (2001) High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology 40, 74–83.

    Article  PubMed  CAS  Google Scholar 

  13. Scutt, A., Kollenkirchen, U., and Bertram P. (1996) The effect of age and ovariectomy on fibroblastic colony-forming unit numbers in rat bone marrow. Calcif. Tissue Int. 59, 309–310.

    Article  PubMed  CAS  Google Scholar 

  14. Erben, R. G., Scutt, A. M., Miao, D., Kollenkirchen, U., and Haberey, M. (1997) Short-term treatment of rats with high-dose calcitriol stimulates bone formation in vivo and increases the number of osteoblast precursor cells in the bone marrow. Endocrinology 138, 4629–4635.

    Article  PubMed  CAS  Google Scholar 

  15. Nishida, S., Yamaguchi, A., Tanizawa, T., et al. (1994) Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proiliferation and differentiation of osteoprogenitor cells in the bone marrow. Bone 15, 717–723.

    Article  PubMed  CAS  Google Scholar 

  16. Weinreb, M., Suponitzky, I., and Keila, S. (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20, 521–526.

    Article  PubMed  CAS  Google Scholar 

  17. Jilka, R. L., Weinstein, R. S., Takahashi, K., Parfitt, A. M., and Manolagas, S. C. (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J. Clin. Invest. 97, 1732–1740.

    Article  PubMed  CAS  Google Scholar 

  18. Di Gregorio, G. B., Yamamoto, M., Ali, A. A., et al. (2001) Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol. J. Clin. Invest. 107, 803–812.

    Article  PubMed  Google Scholar 

  19. Jilka, R. L., Takahashi, K., Munshi, M., Williams, D. C., Roberson, P. K., and Manolagas S. C. (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J. Clin. Invest. 101, 1942–1950.

    Article  PubMed  CAS  Google Scholar 

  20. Kajkenova, O., Lecka-Czernik, B., Gubrij, I., et al. (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner. Res. 12, 1772–1779.

    Article  PubMed  CAS  Google Scholar 

  21. Dobson, K. R., Reading, L., Haberey, M., Marine, X., and Scutt, A. (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif. Tissue Int. 65, 411–413.

    Article  PubMed  CAS  Google Scholar 

  22. Dobson, K., Reading, L., and Scutt, A. (1999) A cost effective method for the automatic quantitative analysis of fibroblastic-colony forming units with osteoblastic potential. Calcif. Tissue Int. 65, 166–172.

    Article  PubMed  CAS  Google Scholar 

  23. Parry, R. L., Chin, T. W., and Donahoe, K. (1991) Computer-aided cell colony counting. BioTechniques 10, 772–774.

    PubMed  CAS  Google Scholar 

  24. Nefussi, J. R., Ollivier, A., Oboeuf, M., and Forest, N. (1997) Rapid nodule evaluation computer-aided image analysis procedure for bone nodule quantification. Bone 20, 5–16.

    Article  PubMed  CAS  Google Scholar 

  25. Hoekstra, S. J., Tarka, D. K., Kringle, R. O., and Hincks, J. R. (1998) Development of an automated bone marrow colony counting system. In Vitro Mol. Toxicol. 11, 207–213.

    CAS  Google Scholar 

  26. Barber, P. R., Vojnovic, B., Kelly, J., et al. (2001) Automated counting of mammalian colonies. Phys. Med. Biol. 46, 63–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Scutt, A., Reading, L., Scutt, N., Still, K. (2003). Mineralizing Fibroblast-Colony-Forming Assays. In: Helfrich, M.H., Ralston, S.H. (eds) Bone Research Protocols. Methods in Molecular Medicine, vol 80. Humana Press. https://doi.org/10.1385/1-59259-366-6:29

Download citation

  • DOI: https://doi.org/10.1385/1-59259-366-6:29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-044-1

  • Online ISBN: 978-1-59259-366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics