Bone Histomorphometry

  • Shobna Vedi
  • Juliet Compston
Part of the Methods in Molecular Medicine book series (MIMM, volume 80)


Histomorphometric examination of bone biopsies provides information on bone turnover, remodeling, and structure, which cannot be obtained from other investigative approaches such as bone densitometry and biochemical markers of bone turnover. Recently, there have been significant advances in histomorphometric techniques with the use of computer-assisted analysis and the development of sophisticated approaches to assessment of microstructure of bone. The application of these techniques has been particularly valuable in analyzing the cellular pathophysiology of different forms of osteoporosis and in determining the mechanisms by which drugs affect bone. In this chapter we review current methodology used in the preparation and histomorphometric assessment of histological sections of bone, with particular reference to its application in humans.


  1. 1.
    Garrahan, N. J., Mellish, R. W. E., and Compston, J. E. (1986) A new method for the analysis of two-dimensional trabecular bone structure in human iliac crest biopsies. J. Microsc. 142, 341–349.PubMedGoogle Scholar
  2. 2.
    Compston, J. E., Garrahan, N. J., Croucher, P. I., and Yamaguchi, K. (1993) Quantitative analysis of trabecular bone structure. Bone 14, 187–192.PubMedCrossRefGoogle Scholar
  3. 3.
    Frost, H. M. (1969) Tetracycline-based histological analysis of bone remodelling. Calcif. Tissue Int. 3, 211–237.CrossRefGoogle Scholar
  4. 4.
    Matrajt, H. and Hioco, D. (1996) Solochrome cyanin R as an indicator dye of bone morphology. Stain Tech. 41, 97–99.Google Scholar
  5. 5.
    Goldner, J. (1938) A modification of the Masson trichrome technique for routine laboratory purposes. Am. J. Pathol. 14, 237–243.PubMedGoogle Scholar
  6. 6.
    Villanueva, A. R., Kujawa, M., Mathews, C. H. E., and Parfitt A. M. (1983) Identification of the mineralization front: comparison of a modified toluidine blue stain with tetracycline fluorescence. Metab. Bone Dis. Rel. Res. 5, 41–45.CrossRefGoogle Scholar
  7. 7.
    Parfitt, A. M.(1983) The physiological and clinical significance of bone histomorphometric data, in Bone Histomorphometry: Techniques and Interpretations (Recker, R., ed.), CRC Press, Boca Raton, FL pp. 143–224.Google Scholar
  8. 8.
    Parfitt, A. M., Drezner, M. K., Glorieux, F. H., et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J. Bone Min. Res. 2, 595–610.CrossRefGoogle Scholar
  9. 9.
    Frost, H. M. (1963) Mean formation time of human osteons. Canad. J Biochem. Physiol. 41, 1307–1319.PubMedGoogle Scholar
  10. 10.
    Agerbaek, M. O., Eriksen, E. F., Kragstrup, J., Mosekilde, L., and Melsen, F. (1991) A reconstruction of the remodelling cycle in normal human iliac cortical bone. Bone Miner. 12, 101–112.PubMedCrossRefGoogle Scholar
  11. 11.
    Bell, K. L., Loveridge, N., Power, J., Garrahan, N. J., Meggitt, B. F., and Reeve, J. (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24, 57–64.PubMedCrossRefGoogle Scholar
  12. 12.
    de Vernejoul, M. C., Belenguer-Prieto, R., Kuntz, D., et al. (1998) Bone histological heterogeneity in postmenopausal osteoporosis: a sequential histomorphometric study. Bone 8, 339–342.CrossRefGoogle Scholar
  13. 13.
    Chavassieux, P. M., Arlot, M. E., and Meunier, P. J. (1985) Intermethod variation in bone histomorphometry: comparison between manual and computerised methods applied to iliac bone biopsies. Bone 6, 211–219.CrossRefGoogle Scholar
  14. 14.
    Wright, C. D. P., Vedi, S., Garrahan, N. J., Stanton, M., Duffy, S., and Compston, J. E. (1992) Combined inter-observer and inter-method variation in bone histomorphometry. Bone 13, 205–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Vedi, S. and Compston, J. E. (1984) Direct and indirect measurements of osteoid seam width in human iliac crest trabecular bone. Metab. Bone Dis. Rel. Res. 5, 269–274.CrossRefGoogle Scholar
  16. 16.
    Vedi, S., Tighe J. R., and Compston, J. E. (1984) Measurement of total resorption surface in iliac crest trabecular bone in man. Metab. Bone Dis. Rel. Res. 5, 275–280.CrossRefGoogle Scholar
  17. 17.
    Compston, J. E. and Croucher, P. I. (1991) Histomorphometric assessment of trabecular bone remodelling in osteoporosis. Bone Miner. 14, 91–102.PubMedCrossRefGoogle Scholar
  18. 18.
    Frost, H. M. (1985) The pathomechanics of osteoporosis. Clin. Orthop. Rel. Res. 200, 198–225.Google Scholar
  19. 19.
    Parfitt, A. M., Mathews, C. H. E., Villanueva, A. R., Kleerekoper, M., Frame, B., and Rao, D. S. (1983) Relationship between surface volume and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanism of bone loss. J. Clin. Invest. 72, 1396–1409.PubMedCrossRefGoogle Scholar
  20. 20.
    Hahn, M., Vogel, M., Pompesius-Kempa, M., and Delling, G. (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13, 327–330.PubMedCrossRefGoogle Scholar
  21. 21.
    Vesterby, A. (1990) Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of 1st lumbar vertebra. Bone 11, 149–155.PubMedCrossRefGoogle Scholar
  22. 22.
    Serra, J. (1982) Image Analysis and Mathematical Morphology. Academic Press, London, UK.Google Scholar
  23. 23.
    Vesterby, A., Gundersen, H. J. G., and Melsen, F. (1989) Star volume of marrow space and trabeculae of first lumbar vertebra: sampling efficiency and biological variation. Bone 10, 7–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Odgäard, A. and Gundersen, H. J. G (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstruction. Bone 14, 173–182.PubMedCrossRefGoogle Scholar
  25. 25.
    Gundersen, H. J. G., Boyce, R. W., Nyengäard, J. R., and Odgäard, A. (1993) The conneulor: unbiased estimation of connectivity using physical disectors under projection. Bone 14, 217–222.PubMedCrossRefGoogle Scholar
  26. 26.
    Majumdar, S. and Genant, H. K. (1995) A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis. Osteoporos. Int. 5, 79–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Genant, H. K., Engelke, K., Fuerst, T., et al. (1996) Non invasive assessment of bone mineral and structure; state of the art. J. Bone Miner. Res. 11, 707–730.PubMedCrossRefGoogle Scholar
  28. 28.
    Vesterby, A., Kragstrup, J., Gundersen, H. J. G., and Melsen, F. (1987) Unbiased stereological estimation of surface density in bone using vertical sections. Bone 8, 13–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Kragstrup, J., Melsen, F., and Mosekilde, L. (1982) Reduced wall thickness of completed remodelling sites in iliac trabecular bone following anticonvulsant therapy. Metab. Bone Dis. Rel. Res. 4, 181–185.CrossRefGoogle Scholar
  30. 30.
    Frost, H.M. (1983) Bone histomorphometry: choice of marking agent and labelling schedule, in Bone Histomorphometry: Techniques and Interpretation (Recker, R., ed.), CRC Press, Boca Raton, FL, pp. 37–51.Google Scholar
  31. 31.
    Foldes, J., Shih, M. S., and Parfitt, A. M. (1990) Frequency distribution of tetracycline based measurements: implication for the interpretation of bone formation indices in the absence of double-labelled surfaces. J. Bone Min. Res. 5, 1063–1067.CrossRefGoogle Scholar
  32. 32.
    Evans, R. A., Dunstan, C. R., and Baylink, D. J. (1979) Histochemical identification of osteoclasts in undecalcified sections of human bone. Miner. Electrolyte Metab. 2, 179–185.Google Scholar
  33. 33.
    Burstone, M. S.(1959) Histochemical demonstration of acid phosphatase activity in osteoclasts. J. Histochem. Cytochem. 7, 39–41.PubMedGoogle Scholar
  34. 34.
    Croucher, P. I., Gilks, W., and Compston, J. E. (1995) Evidence for interrupted bone resorption in human iliac cancellous bone. J Bone. Miner. Res. 10, 1537–1543.PubMedCrossRefGoogle Scholar
  35. 35.
    Eriksen, E. F., Gundersen, H. J. G., Melsen, F., and Mosekilde, L. (1984) Reconstruction of the resorptive site in iliac trabecular bone; a kinetic model for bone resorption in 20 normal individuals. Metab. Bone Dis. Rel. Res. 5, 235–242.CrossRefGoogle Scholar
  36. 36.
    Garrahan, N. J., Croucher, P. I., and Compston, J. E. (1990) A computerised technique for the quantitative assessment of resorption cavities in trabecular bone. Bone 11, 241–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Cohen-Solal, M. E., Shih, M-S., Lundy, M. W., and Parfitt, A. M. (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J. Bone. Miner. Res. 6, 1331–1338.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Shobna Vedi
    • 1
  • Juliet Compston
    • 1
  1. 1.Bone Research Group, Department of MedicineUniversity of Cambridge School of Clinical MedicineCambridgeUK

Personalised recommendations