Skip to main content

Effects of Psychomotor Stimulants on Glutamate Receptor Expression

  • Protocol
Drugs of Abuse

Part of the book series: Methods In Molecular Medicineā„¢ ((MIMM,volume 79))

  • 1427 Accesses

Abstract

It is increasingly well accepted that addiction can be viewed as a form of neuronal plasticity, even as a type of very powerful, albeit maladaptive, learning. On a behavioral level, this can be conceptualized as the transition from experimentation to compulsive drug-seeking behavior. This view of addiction has been strengthened by many recent studies demonstrating commonalities between mechanisms underlying learning and addiction. Both are associated with changes in gene expression, phosphorylation and phosphatase cascades, neurotrophin signaling, altered dendritic morphology, and activity-dependent forms of plasticity such as long-term potentiation (LTP) and long-term depression (LTD) (1,2). Through these mechanisms, drugs of abuse are proposed to strengthen or weaken activity in pathways related to motivation and reward. This in turn may produce behavioral changes that drive compulsive drug-seeking behavior in addiction, including sensitization of incentive-motivational effects of drugs, enhanced ability of drug-conditioned stimuli to control behavior, and loss of inhibitory control mechanisms that normally govern reward-seeking behavior (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyman, S. E. and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. 2, 695ā€“703.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Wolf, M. E. (2002) Addiction and glutamate-dependent plasticity, in Glutamate and Addiction (Herman, B. H., Frankenheim, J., Litten, R., Sheridan, P. H., Weight, F. F., and Zukin, S. R., eds.), Humana Press, Totowa, NJ, pp. 127ā€“142.

    ChapterĀ  Google ScholarĀ 

  3. Jentsch, J. D. and Taylor, J. R. (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146, 373ā€“390.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Everitt, B. J. and Wolf, M. E. (2002) Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312ā€“3320.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Wolf, M. E. (2001) The neuroplasticity of addiction, in Toward a Theory of Neuroplasticity (Shaw, C. A. and McEachern, J. C., eds.), Taylor & Francis, Philadelphia, pp. 359ā€“372.

    Google ScholarĀ 

  6. Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247ā€“291.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Robinson, T. E. and Berridge, K. C. (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95 (Suppl. 2), S91ā€“S117.

    PubMedĀ  Google ScholarĀ 

  8. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679ā€“720.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. White, F. J., Hu, X.-T., Zhang, X.-F., and Wolf, M. E. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445ā€“454.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Zhang, X.-F., Hu, X.-T., White, F. J., and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699ā€“706.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Giorgetti, M., Hotsenpiller, G., Ward, P., Teppen, T., and Wolf, M. E. (2001) Amphetamine-induced plasticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J. Neurosci.. 21, 6362ā€“6369.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274ā€“282.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Ortiz, J., Fitzgerald, L. W., Charlton, M., et al. (1995) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 21, 289ā€“298.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Churchill, L., Swanson, C. J., Urbina, M., and Kalivas, P. W. (1999) Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem. 72, 2397ā€“2403.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Lu, W., Monteggia, L. M., and Wolf, M. E. (2002) Repeated administration of amphetamine or cocaine does not alter AMPA receptor subunit expression in the rat midbrain. Neuropsychopharmacology 26, 1ā€“13.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  16. Carlezon, W. A., Jr., Boundy, V. A., Haile, C. N., et al. (1997) Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812ā€“814.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Carlezon, W. A., Jr., Haile, C. N., Coopersmith, R., et al. (2000) Distinct sites of opiate reward and aversion within the midbrain identified using a herpes simplex virus vector expressing GluR1. J. Neurosci. 20, RC62.

    PubMedĀ  Google ScholarĀ 

  18. Ben-Shahar, O. and Ettenberg, A. (1994) Repeated stimulation of the ventral teg-mental area sensitizes the hyperlocomotor response to amphetamine. Pharmacol. Biochem. Behav. 48, 1005ā€“1009.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Schenk, S. and Snow, S. (1994) Sensitization to cocaineā€™s motor activating properties produced by electrical kindling of the medial prefrontal cortex but not of the hippocampus. Brain Res. 659, 17ā€“22.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Steketee, J. D. and Kalivas, P. W. (1991) Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. J. Pharmacol. Exp. Ther. 259, 916ā€“924.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Bardo, M. T., Robinet, P. M., Mattingly, B. A., and Margulies, J. E. (2001) Effect of 6-hydroxydopamine or repeated amphetamine treatment on mesencephalic mRNA levels for AMPA glutamate receptor subunits in the rat. Neurosci. Lett. 302, 133ā€“136.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Ghasemzadeh, M. B., Nelson, L. C., Lu, X. Y., and Kalivas, P. W. (1999) Neuro-adaptations in ionotropic and metabotropic glutamate receptor mRNA produced by cocaine treatment. J. Neurochem. 72, 157ā€“165.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Loftis, J. M. and Janowsky, A. (2000) Regulation of NMDA receptor subunits and nitric oxide synthase expression during cocaine withdrawal. J. Neurochem. 75, 2040ā€“2050.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Lu, W., Monteggia, L. M., and Wolf, M. E. (1999) Withdrawal from repeated amphetamine administration reduces NMDAR1 expression in the substantia nigra, nucleus accumbens and medial prefrontal cortex. Eur. J. Neurosci. 11, 3167ā€“3177.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Schenk, S. and Partridge, B. (1997) Effects of acute and repeated administration of N-methyl-d-aspartate (NMDA) into the ventral tegmental area: locomotor activating effects of NMDA and cocaine. Brain Res. 769, 225ā€“232.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Licata, S. C., Freeman, A. Y., Pierce-Bancroft, A. F., and Pierce, R. C. (2000) Repeated stimulation of L-type calcium channels in the rat ventral tegmental area mimics the initiation of behavioral sensitization to cocaine. Psychopharmacology 152, 110ā€“118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Sheng, M. and Lee, S. H. (2001) AMPA receptor trafficking and the control of synaptic transmission. Cell 105, 825ā€“828.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Ungless, M. A., Whistler, J. L., Malenka, R. C., and Bonci, A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583ā€“587.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Jones, S., Kornblum, J. L., and Kauer, J. A. (2000) Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J. Neurosci. 20, 5575ā€“5580.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Thomas, M. J., Malenka, R. C., and Bonci, A. (2000) Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581ā€“5586.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Kalivas, P. W. and Duffy, P. (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 15, 5379ā€“5388.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Xue, C.-J., Ng, J. P., Li, Y., and Wolf, M. E. (1996) Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352ā€“363.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Fiorillo, C. D. and Williams, J. T. (2000) Selective inhibition by adenosine of mGluR IPSPs in dopamine neurons after cocaine treatment. J. Neurophysiol. 83, 1307ā€“1314.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Paladini, C. A., Fiorillo, C. D., Morikawa, H., and Williams, J. T. (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat. Neurosci. 4, 275ā€“281.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Wolf, M. E. (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific circuits. Mol. Intervent. 2, 146ā€“157.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Chiamulera, C., Epping-Jordan, J. P., Zocchi, A., et al. (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 4, 873ā€“874.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Mao, L., Conquet, F., and Wang, J. Q. (2001) Augmented motor activity and reduced striatal preprodynorphin mRNA induction in response to acute amphetamine administration in metabotropic glutamate receptor 1 knockout mice. Neuroscience 106, 303ā€“312.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Vekovischeva, O. Y., Zamanillo, D., Echenko, O., et al. (2001) Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J. Neurosci. 21, 4451ā€“4459.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol. Depend. 51, 141ā€“153.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Nicola, S. M., Surmeier, D. J., and Malenka, R. C. (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 232, 185ā€“215.

    ArticleĀ  Google ScholarĀ 

  41. Lu, W., Chen, H., Xue, C.-J., and Wolf, M. E. (1997) Repeated amphetamine administration alters the expression of mRNA for AMPA receptor subunits in rat nucleus accumbens and prefrontal cortex. Synapse 26, 269ā€“280.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Lu, W. and Wolf, M. E. (1999) Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32, 119ā€“131.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Zhang, X-.F., Hu, X.-T., and White, F. J. (1998) Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J. Neurosci. 18, 488ā€“498.

    PubMedĀ  Google ScholarĀ 

  44. Scheggi, S., Mangiavacchi, S., Masi, F., Gambarana, C., Tagliamonte, A., and De Montis, M. G. (2002) Dizocilpine infusion has a different effect in the development of morphine and cocaine sensitization: behavioral and neurochemical aspects. Neuroscience 109, 267ā€“274.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Kelz, M. B., Chen, J., Carlezon, W. A., Jr., et al. (1999) Expression of the transcription factor deltaFosB controls sensitivity to cocaine. Nature 16, 272ā€“276.

    Google ScholarĀ 

  46. Narita, M., Aoki, T., and Suzuki, T. (2000) Molecular evidence for the involvement of NR2B subunit containing N-methyl-d-aspartate receptors in the development of morphine-induced place preference. Neuroscience 101, 601ā€“606.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Narita, M., Soma, M., Narita, M., Mizoguchi, H., Tseng, L. F., and Suzuki, T. (2000) Implications of the NR2B subunit-containing NMDA receptor localized in mouse limbic forebrain in ethanol dependence. Eur. J. Pharmacol. 401, 191ā€“195.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Keys, A. S. and Ellison, G. D. (1999) Long-term alterations in benzodiazepine, muscarinic and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor density following continuous cocaine administration. Pharmacol. Toxicol. 85, 144ā€“150.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Itzhak, Y. and Martin, J. L. (2000) Cocaine-induced kindling is associated with elevated NMDA receptor binding in discrete mouse brain regions. Neuropharmacology 39, 32ā€“39.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Szumlinksi, K. K., Herrick-Davis, K., Teitler, M., Maisonneuve, I. M., and Glick, S. D. (2000) Behavioural sensitization to cocaine is dissociated from changes in striatal NMDA receptor levels. NeuroReport 11, 2785ā€“2788.

    ArticleĀ  Google ScholarĀ 

  51. Bhargava, H. N. and Kumar, S. (1999) Sensitization to the locomotor stimulant effect of cocaine modifies the binding of [3H]MK-801 to brain regions and spinal cord of the mouse. Gen. Pharmacol. 32, 359ā€“363.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Mao, L. and Wang, J. Q. (2001) Differentially altered mGluR1 and mGluR5 mRNA expression in rat caudate nucleus and nucleus accumbens in the development and expression of behavioral sensitization to repeated amphetamine administration. Synapse 41, 230ā€“240.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Swanson, C. J., Baker, D. A., Carson, D., Worley, P. F., and Kalivas, P. W. (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J. Neurosci. 21, 9043ā€“9052.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Bell, K. and Kalivas, P. W. (1996) Context-specific cross sensitization between systemic cocaine and intra-accumbens AMPA infusion in rats. Psychopharmacology 127, 377ā€“383.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Pierce, R. C., Bell, K., Duffy, P., and Kalivas, P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550ā€“1560.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Vezina, P. and Kim, J.-H. (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci. Biobehav. Rev. 23, 577ā€“589.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Bibb, J. A., Chen, J., Taylor, J. R., et al. (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376ā€“380.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Thomas, M. J., Beurrier, C., Bonci, A., and Malenka, R. C. (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217ā€“1223.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Wolf, M. E., Dahlin, S. L., Xu, H.-T., Xue, C.-J., and White, K. (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with N-methyl-d-aspartate antagonists. Neuroscience 69, 417ā€“439.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Cador, M., Bjijou, Y., Cailhol, S., and Stinus, L. (1999) d-Amphetamine-induced behavioral sensitization: implication of a glutamatergic medial prefrontal cortex-ventral tegmental area innervation. Neuroscience 94, 705ā€“721.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Li, Y., Hu, X.-T., Berney, T. G., et al. (1999) Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations. Synapse 34, 169ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Pierce, R. C., Reeder, D. C., Hicks, J., Morgan, Z. R., and Kalivas, P. W. (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82, 1103ā€“1114.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Li, Y. and Wolf, M. E. (1997) Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav. Brain Res. 84, 285ā€“289.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Li, Y., Wolf, M. E., and White, F. J. (1999) The expression of cocaine sensitization is not prevented by MK-801 or ibotenic acid lesions of the medial prefrontal cortex. Behav. Brain Res. 104, 119ā€“125.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Karler, R., Calder, L. D., Thai, D. K., and Bedingfield, J. B. (1998) The role of dopamine in the mouse frontal cortex: a new hypothesis of behavioral sensitization to amphetamine and cocaine. Pharmacol. Biochem. Behav. 61, 435ā€“443.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Prasad, B. M., Hochstatter, T., and Sorg, B. A. (1999) Expression of cocaine sensitization: regulation by the medial prefrontal cortex. Neuroscience 88, 765ā€“774.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Peterson, J. D., Wolf, M. E., and White, F. J. (2000) Altered responsiveness of medial prefrontal cortex neurons to glutamate and dopamine after withdrawal from repeated amphetamine treatment. Synapse 36, 342ā€“344.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Chefer, V. I., Moron, J. A., Hope, B., Rea, W., and Shippenberg, T. S. (2000) Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 101, 619ā€“627.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Hedou, G., Homberg, J., Feldon, J., and Heidbreder, C. A. (2001) Expression of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 40, 366ā€“382.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Stephans, S. E. and Yamamoto, B. K. (1995) Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res. 700, 991ā€“906.

    ArticleĀ  Google ScholarĀ 

  71. Reid, M. S., Hsu, K., Jr., and Berger, S. P. (1997) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine. Synapse 27, 95ā€“105.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Del Arco, A., Martinez, R., and Mora, F. (1998) Amphetamine increases extracellular concentrations of glutamate in the prefrontal cortex of the awake rat: a microdialysis study. Neurochem. Res. 23, 1153ā€“1158.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  73. Hotsenpiller, G. and Wolf, M. E. Extracellular glutamate levels in prefrontal cortex during the expression of associative responses to cocaine related stimuli. Neuropharmacology, in press.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wolf, M.E. (2003). Effects of Psychomotor Stimulants on Glutamate Receptor Expression. In: Wang, J.Q. (eds) Drugs of Abuse. Methods In Molecular Medicineā„¢, vol 79. Humana Press. https://doi.org/10.1385/1-59259-358-5:13

Download citation

  • DOI: https://doi.org/10.1385/1-59259-358-5:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-057-1

  • Online ISBN: 978-1-59259-358-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics