Skip to main content

Lentivirus Vector-Mediated Gene Transfer to Cardiomyocytes

  • Protocol
Cardiac Cell and Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 219))

Abstract

Gene therapy has the potential to reverse the genetic causes and modify the pathophysiology of many innate and acquired diseases (14). Transduction of foreign DNA into cardiac myocytes is of potential value for therapeutic applications (5,6) and also offers an experimental approach to investigate the roles of individual genes in cardiovascular pathophysiology. Both efficient delivery and long-term expression of transduced genes is required before the full benefit of genetic manipulation strategies can be realized in the cardiovascular system. However, all the current methods of gene delivery have major limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulligan, R. C. (1993) The basic science of gene therapy. Science 260, 926–932.

    Article  PubMed  CAS  Google Scholar 

  2. Crystal, R. G. (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270, 404–410.

    Article  PubMed  CAS  Google Scholar 

  3. Leiden, J. M. (1995) Gene therapy-promise, pitfalls, and prognosis. N. Engl. J. Med. 333, 871–873.

    Article  PubMed  CAS  Google Scholar 

  4. Verma, I. M. and Somia, N. (1997) Gene therapy—promises, problems and prospects. Nature 389, 239–242.

    Article  PubMed  CAS  Google Scholar 

  5. Lafont, A., Guerot, C., and Lemarchand, P. (1996) Prospects for gene therapy in cardiovascular disease. Eur. Heart J. 17, 1312–1317.

    PubMed  CAS  Google Scholar 

  6. Partridge, T. A. and Davies, K. E. (1995) Myoblast-based gene therapies. Br. Med. Bull. 51, 123–137.

    PubMed  CAS  Google Scholar 

  7. Shi, Y., Ford, A., Vernami, P., and Zalewski, A. (1994) Transgene expression in the coronary circulation: transcatheter gene delivery. Gene Ther. 1, 408–414.

    PubMed  CAS  Google Scholar 

  8. Schulick, A. H., Newman, K. D., Virmani, R., and Dichek, D. A. (1995) In vivo gene transfer into injured carotid arteries. Optimization and evaluation of acute toxicity. Circulation 91, 2407–2414.

    PubMed  CAS  Google Scholar 

  9. Lewis, P. F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516.

    PubMed  CAS  Google Scholar 

  10. Naldini, L., Blomer, U., Gallay, P., et al., (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  11. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yec, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  12. Naldini, L., Blomer, U., Gage, F. H., Trono, D., and Verma, I. M. (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11,382–11,388.

    Article  PubMed  CAS  Google Scholar 

  13. Miyake, K., Suzuki, N., Matsucka, H., Tohyama, T., and Shimada, T. (1998) Stable integration of human immunodeficiency virus-based retroviral vectors into the chromosomes of nondividing cells. Hum. Gene Ther. 9, 467–475.

    Article  PubMed  CAS  Google Scholar 

  14. Blomer, U., Naldini, L., Verma, I. M., Trono, D., and Gage, F. H. (1996) Applications of gene therapy to the CNS. Hum. Mol. Genet. 5, 1397–1404.

    PubMed  Google Scholar 

  15. Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., and Verma, I. M. (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17, 314–317.

    Article  PubMed  CAS  Google Scholar 

  16. Sakoda, T., Kasahara, N., Hammano, Y., and Kedes, L. (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell Cardiol. 31, 2037–2047.

    Article  PubMed  CAS  Google Scholar 

  17. Page, K. A., Landau, N. R., and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276.

    PubMed  CAS  Google Scholar 

  18. Shimada, T., Fujii, H., Mitsuya, H., and Nienhuis, A. W. (1991) Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector. J. Clin. Invest. 88, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  19. Buchschacher, G. L., Jr. and Panganiban, A. T. (1992) Human immunodeficiency virus vectors for inducible expression of foreign genes. J. Virol. 66, 2731–2739.

    PubMed  CAS  Google Scholar 

  20. Rebolledo, M. A., Krogstad, P., Chen, F., Shannon, K. M., and Klitzner, J. S. (1998) Infection of human fetal cardiac myocytes by a human immunodeficiency virus-1-derived vector. Circ. Res. 83, 738–742.

    PubMed  CAS  Google Scholar 

  21. Mochizuki, H., Schwartz, J. P., Tanaka, K., Brady, R. O., and Reiser, J. (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883.

    PubMed  CAS  Google Scholar 

  22. Sussman, M. A., Hamm-Alvarez, S. F., Vilalta, P. M., Welch, S., and Kedes, L. (1997) Involvement of phosphorylation in doxorubicin-mediated myofibril degeneration. An immunofluorescence microscopy analysis. Circ. Res. 80, 52–61.

    PubMed  CAS  Google Scholar 

  23. Ueyama, T., Sakoda, T., Kauashima, S., et al. (1997) Activated RhoA stimulates c-fos gene expression in myocardial cells. Circ. Res. 81, 672–678.

    PubMed  CAS  Google Scholar 

  24. Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84, 156–160.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, C. and Okayama, H. (1987)High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.

    PubMed  CAS  Google Scholar 

  26. Sakoda, T., Kaibuchi, K., Kishi, K., et al. (1992) smg/rap1/Krev-1 p21s inhibit the signal pathway to the c-fos promoter/enhancer from c-Ki-ras p21 but not from c-raf-1 kinase in NIH3T3 cells. Oncogene 7, 1705–1711.

    PubMed  CAS  Google Scholar 

  27. Sanes, J. R., Rubenstein, J. L., and Nicolas, J. F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142.

    PubMed  CAS  Google Scholar 

  28. Radsak, K., Fuhrmann, R., Franke, R. P., et al., Induction by sodium butyrate of cytomegalovirus replication in human endothelial cells. Arch. Virol. 107, 151–158.

    Google Scholar 

  29. Saemundsen, A. K., Kallin, B., and Klein, G. (1980) Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus. Virology 107, 557–561.

    Article  PubMed  CAS  Google Scholar 

  30. Ash, R. J. (1986) Butyrate-induced reversal of herpes simplex virus restriction in neuroblastoma cells. Virology 155, 584–592.

    Article  PubMed  CAS  Google Scholar 

  31. Bohan, C., York, D., and Srinivasan, A. (1987) Sodium butyrate activates human immunodeficiency virus long terminal repeat-directed expression. Biochem. Biophys. Res. Commun. 148, 899–905.

    Article  PubMed  CAS  Google Scholar 

  32. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875.

    Article  PubMed  CAS  Google Scholar 

  33. Dull, T., Zufferey, R., Kelly, M., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  34. Zufferey, R., Dull, T., Mardel, R. J., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Sakoda, T., Kasahara, N., Kedes, L. (2003). Lentivirus Vector-Mediated Gene Transfer to Cardiomyocytes. In: Metzger, J.M. (eds) Cardiac Cell and Gene Transfer. Methods in Molecular Biology, vol 219. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-350-X:53

Download citation

  • DOI: https://doi.org/10.1385/1-59259-350-X:53

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-994-0

  • Online ISBN: 978-1-59259-350-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics