Skip to main content

Transgene Design

  • Protocol
Transgenic Mouse

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 209))

  • 1610 Accesses

Abstract

The application of transgenesis has increased exponentially since its introduction in the early 1980s, and it is still one of the most powerful methods to study gene function. As approaches to solve scientific problems became more complex, transgene design evolved alongside. At this moment the versatility in strategies and applications of transgenic animal models is both staggering and exciting. An attempt to give a fully comprehensive overview of all variations in transgene design described in the scientific press would be an illusion and would exceed the aim of this chapter. Nevertheless, the strategy for generating a transgenic animal model (i.e., design of a transgene) warrants special attention to ensure the highest chances for success. Therefore, this chapter provides a concise overview of the elementary requirements of a transgenic construct and some considerations in transgene design. In addition, a number of aspects are discussed that may influence choices early on in the process of designing and generating a transgenic mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates G. P., Mangiarini L., Mahal A., and Davies S. W. (1997) Transgenic models of Huntington’s disease. Hum. Mol. Genet. 6, 1633–1637.

    Article  PubMed  CAS  Google Scholar 

  2. Beal M. F. (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366, 211–223.

    Article  PubMed  CAS  Google Scholar 

  3. Gramolini A. O. and Jasmin B. J. (1997) Duchenne muscular dystrophy and the neuromuscular junction: the utrophin link. Bioessays 19, 747–750.

    Article  PubMed  CAS  Google Scholar 

  4. Erickson R. P. (1996) Mouse models of human genetic disease: which mouse is more like a man? Bioessays 18, 993–998.

    Article  PubMed  CAS  Google Scholar 

  5. Hsiao K. and Prusiner S. B. (1991) Molecular genetics and transgenic model of Gertsmann-Straussler-Scheinker disease. Alzheimer Dis. Assoc. Disord. 5, 155–162.

    Article  PubMed  CAS  Google Scholar 

  6. Leavitt B. R., Wellington C. L., and Hayden M. R. (1999) Recent insights into the molecular pathogenesis of Huntington disease. Semin. Neurol. 19, 385–95.

    Article  PubMed  CAS  Google Scholar 

  7. Mehler M. F. (2000) Brain dystrophin, neurogenetics and mental retardation. Brain Res. Brain Res. Rev. 32, 277–307.

    Article  PubMed  CAS  Google Scholar 

  8. Choi T., Huang M., Gorman C., and Jaenisch R. (1991) A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11, 3070–3074.

    PubMed  CAS  Google Scholar 

  9. Aronow B. J., Silbiger R. N., Dusing M. R., et al. (1992) Functional analysis of the human adenosine deaminase gene thymic regulatory region and its ability to generate position-independent transgene expression. Mol. Cell. Biol. 12, 4170–4185.

    PubMed  CAS  Google Scholar 

  10. Betz A. G., Milstein C., Gonzalez-Fernandez A., et al. (1994) Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248.

    Article  PubMed  CAS  Google Scholar 

  11. Brooks A. R., Nagy B. P., Taylor S., et al. (1994) Sequences containing the second-intron enhancer are essential for transcription of the human apolipoprotein B gene in the livers of transgenic mice. Mol. Cell. Biol. 14, 2243–2256.

    PubMed  CAS  Google Scholar 

  12. Charron G., Guy L. G., Bazinet M., and Julien J. P. (1995) Multiple neuronspecific enhancers in the gene coding for the human neurofilament light chain. J. Biol. Chem. 270, 30604–30610.

    Article  PubMed  CAS  Google Scholar 

  13. Dale T. C., Krnacik M. J., Schmidhauser C., et al. (1992) High-level expression of the rat whey acidic protein gene is mediated by elements in the promoter and 3′ untranslated region. Mol. Cell. Biol. 12, 905–914.

    PubMed  CAS  Google Scholar 

  14. Krnacik M. J., Li S., Liao J., and Rosen J. M. (1995) Position-independent expression of whey acidic protein transgenes. J. Biol. Chem. 270, 11119–11129.

    Article  PubMed  CAS  Google Scholar 

  15. Li Q., Harju S., and Peterson K. R. (1999) Locus control regions: coming of age at a decade plus. Trends Genet. 15, 403–408.

    Article  PubMed  Google Scholar 

  16. Liska D. J., Reed M. J., Sage E. H., and Bornstein P. (1994) Cell-specific expression of alpha 1(I) collagen-hGH minigenes in transgenic mice. J. Cell Biol. 125, 695–704.

    Article  PubMed  CAS  Google Scholar 

  17. Zimmerman L., Parr B., Lendahl U., et al. (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12, 11–24.

    Article  PubMed  CAS  Google Scholar 

  18. Kozak M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947–950.

    Article  PubMed  CAS  Google Scholar 

  19. Manson A. L., Trezise A. E., MacVinish L. J., et al. (1997) Complementation of null CF mice with a human CFTR YAC transgene. EMBO J. 16, 4238–4249.

    Article  PubMed  CAS  Google Scholar 

  20. Sun T., Jayatilake D., Afink G. B., et al. (2000) A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. Development 127, 4519–4529.

    PubMed  CAS  Google Scholar 

  21. Hodgson J. G., Agopyan N., Gutekunst C. A., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntington, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  22. Schedl A., Montoliu L., Kelsey G., and Schutz G. (1993) A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261.

    Article  PubMed  CAS  Google Scholar 

  23. Vassaux G., Manson A. L., and Huxley C. (1997) Copy number-dependent expression of a YAC-cloned human CFTR gene in a human epithelial cell line. Gene Ther. 4, 618–623.

    Article  PubMed  CAS  Google Scholar 

  24. Palmiter R. D., Norstedt G., Gelinas R. E., et al. (1983) Metallothionein-human GH fusion genes stimulate growth of mice. Science 222, 809–814.

    Article  PubMed  CAS  Google Scholar 

  25. Palmiter R. D., Brinster R. L., Hammer R. E., et al. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615.

    Article  PubMed  CAS  Google Scholar 

  26. Brinster R. L. and Palmiter R. D. (1984) Transgenic mice containing growth hormone fusion genes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 307, 309–312.

    Article  PubMed  CAS  Google Scholar 

  27. Brinster R. L., Chen H. Y., Trumbauer M., et al. (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–31.

    Article  PubMed  CAS  Google Scholar 

  28. Palmiter R. D., Wilkie T. M., Chen H. Y., and Brinster R. L. (1984) Transmission distortion and mosaicism in an unusual transgenic mouse pedigree. Cell 36, 869–77.

    Article  PubMed  CAS  Google Scholar 

  29. Ghoshal K. and Jacob S. T. (2000) Regulation of metallothionein gene expression. Prog. Nucleic Acid Res. Mol. Biol. 66, 357–384.

    Article  CAS  Google Scholar 

  30. Fishman G. I. (1998) Timing is everything in life: conditional transgene expression in the cardiovascular system. Circ. Res. 82, 837–844.

    PubMed  CAS  Google Scholar 

  31. Chin L. and DePinho R. A. (2000) Flipping the oncogene switch: illumination of tumor maintenance and regression. Trends Genet. 16, 147–50.

    Article  PubMed  CAS  Google Scholar 

  32. Gardner D. P., Byrne G. W., Ruddle F. H., and Kappen C. (1996) Spatial and temporal regulation of a lacZ reporter transgene in a binary transgenic mouse system. Transgenic Res. 5, 37–48.

    Article  PubMed  CAS  Google Scholar 

  33. Furth P. A., St Onge L., Boger H., et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  34. Jaisser F. (2000) Inducible gene expression and gene modification in transgenic mice. J. Am. Soc. Nephrol. 11(Suppl 16), S95–S100.

    PubMed  CAS  Google Scholar 

  35. St-Onge L., Furth P. A., and Gruss P. (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877.

    Article  PubMed  CAS  Google Scholar 

  36. Shockett P., Difilippantonio M., Hellman N., and Schatz D. G. (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao B., Magdaleno S., Chua S., et al. (2000) Transgenic mouse models for lung cancer. Exp. Lung Res. 26, 567–579.

    Article  PubMed  CAS  Google Scholar 

  38. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. (Ford N., ed.), Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY.

    Google Scholar 

  39. Heisterkamp N., Groffen J., and Stephenson J. R. (1983) The human v-abl cellular homologue. J. Mol. Appl. Genet. 2, 57–68.

    PubMed  CAS  Google Scholar 

  40. Scrable H. and Stambrook P. J. (1999) A genetic program for deletion of foreign DNA from the mammalian genome. Mutat. Res. 429, 225–237.

    PubMed  CAS  Google Scholar 

  41. Doerfler W. (1991) Patterns of DNA methylation—evolutionary vestiges of foreign DNA inactivation as a host defense mechanism. A proposal. Biol. Chem. Hoppe Seyler 372, 557–564.

    CAS  Google Scholar 

  42. Clark A. J., Harold G., and Yull F. E. (1997) Mammalian cDNA and prokaryotic reporter sequences silence adjacent transgenes in transgenic mice. Nucleic Acids Res. 25, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  43. Martin D. I. and Whitelaw E. (1996) The vagaries of variegating transgenes. Bioessays 18, 919–923.

    Article  PubMed  CAS  Google Scholar 

  44. Henikoff S. (1998) Conspiracy of silence among repeated transgenes. Bioessays 20, 532–535.

    Article  PubMed  CAS  Google Scholar 

  45. Garrick D., Fiering S., Martin D. I., and Whitelaw E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.

    Article  PubMed  CAS  Google Scholar 

  46. Heisterkamp N., Jenster G., ten Hoeve J., et al. (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344, 251–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Willem Voncken, J. (2003). Transgene Design. In: Hofker, M.H., van Deursen, J. (eds) Transgenic Mouse. Methods in Molecular Biology™, vol 209. Humana Press. https://doi.org/10.1385/1-59259-340-2:51

Download citation

  • DOI: https://doi.org/10.1385/1-59259-340-2:51

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-915-5

  • Online ISBN: 978-1-59259-340-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics