Skip to main content

Construction and Characterization of Minibodies for Imaging and Therapy of Colorectal Carcinomas

  • Protocol
Book cover Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

Abstract

Engineering of antibodies specific for tumor-associated antigens provides great flexibility in improving their properties for eventual use in the clinic, for the detection of cancer, or as a therapeutic. In some instances, murine monoclonal antibodies (MAbs) have been identified with innate biological anti-tumor activity. Production of chimeric or humanized (CDR-grafted) antibodies lowers the immunogenicity of murine MAbs, a necessary modification if repeat administration is desired (1,2). Chimerization or humanization can also increase the ability of murine MAbs to interact with the human immune system. The anti-lymphoma and anti-breast cancer antibodies Rituxan (Rituximab) and Herceptin (Trastuzumab) are robust examples of this path to a clinically useful reagent (3,4). Production of chimeric or humanized antibodies with Fc regions of a suitable subclass allows engagement of human host immune responses (complement activation, antibody-dependent cellular cytotoxity). Many anti-tumor MAbs, however, must be further “armed” in some fashion in order to be useful as therapeutics. Alternate approaches, described in detail elsewhere in this volume, include fusion of antibodies to toxins or cytotoxic proteins such as ribonuclease, production of bispecific antibodies for recruitment of effector T cells, or direct activation of T cells through chimeric T-cell receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison S. L., Johnson J. M., Herzenberg L. A., and Oi V. T. (1984). Chimeric antibody molecules: Mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA 81, 6851–6855.

    Article  PubMed  CAS  Google Scholar 

  2. Jones P. T., Dear P. H., Foote J., Neuberger M. S., and Winter G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.

    Article  PubMed  CAS  Google Scholar 

  3. Grillo-Lopez A. J., White C. A., Varns C., Shen D., Wei A., Mcclure A., and Dallaire B. K. (1999). Overview of the clinical developent of rituximab: First monoclonal antibody approved for the treatment of lymphoma. Seminars in Oncol. 26, 66–73.

    CAS  Google Scholar 

  4. Baselga J., Tripathy D., Mendelsohn J., Baughman S., Benz C. C., Dantis L., et al. (1996). Phase II study of weekly intravenous recombinant humanized Anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast. J. Clin. Oncol. 14, 737–744.

    PubMed  CAS  Google Scholar 

  5. Junghans R. P. (1997). Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol. Res. 16, 29–57.

    Article  PubMed  CAS  Google Scholar 

  6. Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S. M., et al. (1988). Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  7. Huston J. S., George A. J. T., Adams G. P., Stafford W. F., Jamar F., Tsai M.-S., et al. (1996). Single-chain Fv radioimmunotargeting. Q. J. Nuc. Med. 40, 320–323.

    CAS  Google Scholar 

  8. Begent R. H. J., Verhaar M. J., Chester K. A., Casey J. L., Green A. J., Napier M. P, et al. (1996). Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nature Med. 2, 979–984.

    Article  PubMed  CAS  Google Scholar 

  9. Larson S. M., El-Shirbiny A. M., Divgi C. R., Sgouros G., Finn R. D., Tschmelitsch J., et al. (1997). Single chain antigen binding protein (sFv CC49). First human studies in colorectal carcinoma metastatic to liver. Cancer 80, 2458–2468.

    Article  PubMed  CAS  Google Scholar 

  10. Holliger P., Prospero T., and Winter G. (1993). “Diabodies”: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  11. Wu A. M., Chen W., Raubitschek A. A., Williams L. E., Fischer R., Hu S., et al. (1996). Tumor localization of anti-CEA single chain Fvs: Improved targeting by non-covalent dimers. Immunotechnology 2, 21–36.

    Article  PubMed  CAS  Google Scholar 

  12. Adams G. P., Schier R., McCall A. M., Crawford R. S., Wolf E. J., Weiner L. M., and Marks J. D. (1998). Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  13. Pavlinkova G., Beresford G. W., Booth B. J. M., Batra S. K., and Colcher D. (1999). Pharmacokinetics and biodistribution of engineered single-chain antibody constructs of MAb CC49 in colon carcinoma xenografts. J. Nucl. Med. 40, 1536–1546.

    PubMed  CAS  Google Scholar 

  14. Viti F., Tarli L., Giovannoni L., Zardi L., and Neri D. (1999). Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 59, 347–352.

    PubMed  CAS  Google Scholar 

  15. Hu S., Shively L., Raubitschek A. A., Sherman M., Williams L. E., Wong J. Y. C., et al. (1996). Minibody: A novel engineered anti-CEA antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56, 3055–3061.

    PubMed  CAS  Google Scholar 

  16. Pack P. and Pluckthun A. (1992). Miniantibodies: Use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with avidity in Escherichia coli. Biochemistry 31, 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  17. Kostelny S. A., Cole M. S., and Tso J. Y. (1992). Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. 148, 1547–1553.

    PubMed  CAS  Google Scholar 

  18. Ridgway J. B., Presta L. G., and Carter P. (1996). “Knobs-into-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621.

    Article  PubMed  CAS  Google Scholar 

  19. Dübel S., Breitling F., Kontermann R., Schmidt T., Skerra A., and Little M. (1995). Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods 178, 201–209.

    Article  PubMed  Google Scholar 

  20. Shively J. E. and Beatty J. D. (1985). CEA-related antigens: molecular biology and clinical significance. Crit. Rev. Oncol. Hematol. 2, 355–399.

    Article  PubMed  CAS  Google Scholar 

  21. Hammarström S. (1999). The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. in Cancer Biol. 9, 67–81.

    Article  Google Scholar 

  22. Goldenberg D. M. and Larson S. M. (1992). Radioimmunodetection in cancer identification. J. Nucl. Med. 33, 803–814.

    PubMed  CAS  Google Scholar 

  23. Goldenberg D. M. (1993). Monoclonal antibodies in cancer detection and therapy. Am. J. Med. 94, 297–312.

    Article  PubMed  CAS  Google Scholar 

  24. Buchegger F., Haskell C. M., Schreyer M., Scazziga B. R., Randin S., Carrel S., and Mach J. P. (1983). Radiolabeled fragments of monoclonal antibodies against carcinoembryonic antigen for localization of human colon carcinoma grafted into nude mice. J. Exp. Med. 158, 413–427.

    Article  PubMed  CAS  Google Scholar 

  25. Moffat F. L. Jr., Pinsky C. M., Hammershaimb L., Petrelli N. J., Patt Y. Z., Whaley F. S., and Goldenberg D. M. (1996). Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab′ antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. J. Clin. Oncol. 14, 2295–2305.

    PubMed  Google Scholar 

  26. Wu A. M. and Yazaki P. J. (2000). Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44, 268–283.

    PubMed  CAS  Google Scholar 

  27. Wu A. M., Yazaki P. J., Tsai S., Nguyen K., Anderson A.-L., McCarthy D. W., et al. (2000). High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts using a copper-64 labeled engineered antibody fragment. Proc. Natl. Acad. Sci. USA 97, 8495–8500.

    Article  PubMed  CAS  Google Scholar 

  28. Yazaki P. J., Shively L., Clark C., Cheung C.-W., Le W., Szpikowska B., et al. (2001). Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J. Immunol. Methods 253, 195–208.

    Article  PubMed  CAS  Google Scholar 

  29. Chirgwin J. M., Przybyla A. E., MacDonald R. J., and Rutter W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294.

    Article  PubMed  CAS  Google Scholar 

  30. Bebbington C. R. (1991). Expression of antibody genes in nonlymphoid mammalian cells. Methods Companion Methods Enzymol. 2, 136–145.

    Article  CAS  Google Scholar 

  31. Bebbington C. R., Renner G., Thomson S., King D., Abrams D., and Yarranton G. T. (1992). High-level expresion of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology 10, 169–175.

    Article  PubMed  CAS  Google Scholar 

  32. You Y. H., Hefta L. J., Yazaki P. J., Wu A. M., and Shively J. E. (1998). Expression, purification, and characterization of a two domain carcinoembryonic antigen minigene (N-A3) in Pichia Pastoris. The essential role of the N-domain. Anticancer Res. 18, 3193–3202.

    PubMed  CAS  Google Scholar 

  33. Laemmli U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  34. Towbin H., Staehlin T., and Gordon J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  35. Gagnon P. Purification Tools for Monoclonal Antibodies, Validated Biosystems, Inc., Tuscon, AZ, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Yazaki, P.J., Wu, A.M. (2003). Construction and Characterization of Minibodies for Imaging and Therapy of Colorectal Carcinomas. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics