Skip to main content

Generation of Antibody Molecules Through Antibody Engineering

  • Protocol
Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

  • 1046 Accesses

Abstract

Twenty-five years ago, Georges Köhler and César Milstein invented a means of cloning individual antibodies, thus opening up the way for tremendous advances in the fields of cell biology and clinical diagnostics (1). However, in spite of their early promise, monoclonal antibodies (MAbs) were largely unsuccessful as therapeutic reagents resulting from insufficient activation of human effector functions and immune reactions against proteins of murine origin. These problems have recently been overcome to a large extent using genetic-engineering techniques to produce chimeric mouse/human and completely human antibodies. Such an approach is particularly suitable because of the domain structure of the antibody molecule (2), where functional domains carrying antigen-binding activities (Fabs or Fvs) or effector functions (Fc) can be exchanged between antibodies (see Fig. 1).

Domain organization of an IgG molecule. Antigen-binding surface is formed by variable domains of the heavy (VH) and light (VL) chains. Effector functions are determined by constant CH2 and CH3 domains. The picture is based on the crystal structure of an intact IgG2 anti-canine lymphoma MAb231 (2) (pdb entry 1IGT). The drawing was generated using a molecular visualization program RasMac Molecular Graphics, version 2.7.1 (R. Sayle, Biomolecular Structure, Glaxo Research and Development, Greenford, Middlesex, UK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G. and Milstein C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    PubMed  Google Scholar 

  2. Harris L. J., Larson S. B., Hasel K. W., and McPherson A. (1997). Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597.

    PubMed  CAS  Google Scholar 

  3. Welschof M., Terness P., Kipriyanov S. M., Stanescu D., Breitling F., Dörsam H., et al. (1997). The antigen-binding domain of a human IgG-anti-F(ab’)2 autoantibody. Proc. Natl. Acad. Sci. USA 94, 1902–1907.

    PubMed  CAS  Google Scholar 

  4. Terness P., Welschof M., Moldenhauer G., Jung M., Moroder L., Kirchhoff F., et al. (1997). Idiotypic vaccine for treatment of human B-cell lymphoma. Construction of IgG variable regions from single malignant B cells. Hum. Immunol. 56, 17–27.

    PubMed  CAS  Google Scholar 

  5. Green L. L. (1999). Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23.

    PubMed  CAS  Google Scholar 

  6. Tomizuka K., Shinohara T., Yoshida H., Uejima H., Ohguma A., Tanaka S., et al. (2000). Double trans-chromosomic mice: mai0ntenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA 97, 722–727.

    PubMed  CAS  Google Scholar 

  7. Borrebaeck C. A., Danielsson L., and Moller S. A. (1988). Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 85, 3995–3999.

    PubMed  CAS  Google Scholar 

  8. Little M., Kipriyanov S. M., Le Gall F., and Moldenhauer G. (2000). Of mice and men: hybridoma and recombinant antibodies. Immunol. Today 21, 364–370.

    PubMed  CAS  Google Scholar 

  9. Marks J. D., Tristem M., Karpas A., and Winter G. (1991). Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985–991.

    PubMed  CAS  Google Scholar 

  10. Welschof M., Terness P., Kolbinger F., Zewe M., Dübel S., Dörsam H., et al. (1995). Amino acid sequence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes. J. Immunol. Methods 179, 203–214.

    PubMed  CAS  Google Scholar 

  11. Kipriyanov S. M., Kupriyanova O. A., Little M., and Moldenhauer G. (1996). Rapid detection of recombinant antibody fragments directed against cell-surface antigens by flow cytometry. J. Immunol. Methods 196, 51–62.

    PubMed  CAS  Google Scholar 

  12. Lagerkvist A. C., Furebring C., and Borrebaeck C. A. (1995). Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning. Biotechniques 18, 862–869.

    PubMed  CAS  Google Scholar 

  13. Dreher M. L., Gherardi E., Skerra A., and Milstein C. (1991). Colony assays for antibody fragments expressed in bacteria. J. Immunol. Methods 139, 197–205.

    PubMed  CAS  Google Scholar 

  14. de Wildt R. M., Mundy C. R., Gorick B. D., and Tomlinson I. M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nature Biotechnol. 18, 989–994.

    Google Scholar 

  15. McCafferty J., Griffiths A. D., Winter G., and Chiswell D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    PubMed  CAS  Google Scholar 

  16. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., and Winter G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    PubMed  CAS  Google Scholar 

  17. Khazaeli M. B., Conry R. M., and LoBuglio A. F. (1994). Human immune response to monoclonal antibodies. J. Immunother. 15, 42–52.

    CAS  Google Scholar 

  18. McLaughlin P., Hagemeister F. B., and Grillo-Lopez A. J. (1999). Rituximab in indolent lymphoma: the single-agent pivotal trial. Semin. Oncol. 26, 79–87.

    PubMed  CAS  Google Scholar 

  19. Maloney D. G. (1999). Preclinical and phase I and II trials of rituximab. Semin. Oncol. 26, 74–78.

    PubMed  CAS  Google Scholar 

  20. Press O. W. (1999). Radiolabeled antibody therapy of B-cell lymphomas. Semin. Oncol. 26, 58–65.

    PubMed  CAS  Google Scholar 

  21. Padlan E. A. (1994). Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217.

    PubMed  CAS  Google Scholar 

  22. Jones P. T., Dear P. H., Foote J., Neuberger M. S., and Winter G. (1986). Replacing the complementarity-determing regions in a human antibody with those from a mouse. Nature 321, 522–525.

    PubMed  CAS  Google Scholar 

  23. Verhoeyen M., Milstein C., and Winter G. (1988). Reshaping human antibodies: grafting an anti-lysozyme activity. Science 239, 1534–1536.

    PubMed  CAS  Google Scholar 

  24. Queen C., Schneider W. P., Selick H. E., Payne P. W., Landolfi N. F., Duncan J. F., et al. (1989). A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86, 10,029–10,033.

    PubMed  CAS  Google Scholar 

  25. Co M. S. and Queen C. (1991). Humanized antibodies for therapy. Nature 351, 501–502.

    PubMed  CAS  Google Scholar 

  26. Roguska M. A., Pedersen J. T., Henry A. H., Searle S. M., Roja C. M., Avery B., et al. (1996). A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing. Protein Eng. 9, 895–904.

    PubMed  CAS  Google Scholar 

  27. Carter P., Presta L., Gorman C. M., Ridgway J. B., Henner D., Wong W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89, 4285–4289.

    PubMed  CAS  Google Scholar 

  28. Sliwkowski M. X., Lofgren J. A., Lewis G. D., Hotaling T. E., Fendly B. M., and Fox J. A. (1999). Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70.

    PubMed  CAS  Google Scholar 

  29. Padlan E. A. (1991). A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol. Immunol. 28, 489–498.

    PubMed  CAS  Google Scholar 

  30. Pedersen J. T., Henry A. H., Searle S. J., Guild B. C., Roguska M., and Rees A. R. (1994). Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J. Mol. Biol. 235, 959–973.

    PubMed  CAS  Google Scholar 

  31. Mark G. E. and Padlan E. A. (1994). Humanization of monoclonal antibodies, in Handbook of Experimental Pharmacology, vol. 113: The Pharmacology of Monoclonal Antibodies (Rosenberg M. and Moore G. P., eds.); Springer-Verlag Berlin, Heidelberg, pp. 105–134.

    Google Scholar 

  32. Roguska M. A., Pedersen J. T., Keddy C. A., Henry A. H., Searle S. J., Lambert J. M., et al. (1994). Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA 91, 969–973.

    PubMed  CAS  Google Scholar 

  33. Ghetie V. and Ward E. S. (1997). FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol. Today 18, 592–598.

    PubMed  CAS  Google Scholar 

  34. Liu A. Y., Robinson R. R., Hellström K. E., Murray E. D., Chang C. P., and Hellström I. (1987). Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc. Natl. Acad. Sci. USA 84, 3439–3443.

    PubMed  CAS  Google Scholar 

  35. Riechmann L., Clark M., Waldmann H., and Winter G. (1988). Reshaping human antibodies for therapy. Nature 332, 323–327.

    PubMed  CAS  Google Scholar 

  36. Adair J. R., Athwal D. S., Bodmer M., Bright S. M., Collins A., Pulito V. L., et al. (1994). Humanization of the murine anti-human CD3 monoclonal antibody OKT3. Hum. Antibodies Hybridomas 5, 41–47.

    PubMed  CAS  Google Scholar 

  37. Woodle E. S., Thistlethwaite J. R., Jolliffe L. K., Zivin R. A., Collins A., Adair J. R., et al. (1992). Humanized OKT3 antibodies: successful transfer of immune modulating properties and idiotype expression. J. Immunol. 148, 2756–2763.

    PubMed  CAS  Google Scholar 

  38. Alegre M.-L., Collins A., Pulito V. L., Brosius R. A., Olson W. C., Zivin R. A., et al. (1992). Effect of a single amino acid mutation on the activating and immunosuppressive properties of a “humanized” OKT3 monoclonal antibody. J. Immunol. 148, 3461–3468.

    PubMed  CAS  Google Scholar 

  39. Alegre M.-L., Peterson L. J., Xu D., Sattar H. A., Jeyarajah D. R., Kowalkowski K., et al. (1994). A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57, 1537–1543.

    PubMed  CAS  Google Scholar 

  40. Cole M. S., Anasetti C., and Tso J. Y. (1997). Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells. J. Immunol. 159, 3613–3621.

    PubMed  CAS  Google Scholar 

  41. Armour K. L., Clark M. R., Hadley A. G., and Williamson L. M. (1999). Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities. Eur. J. Immunol. 29, 2613–2624.

    PubMed  CAS  Google Scholar 

  42. Winter G., Griffiths A. D., Hawkins R. E., and Hoogenboom H. R. (1994). Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.

    PubMed  CAS  Google Scholar 

  43. Kipriyanov S. M. and Little M. (1999). Generation of recombinant antibodies. Mol. Biotechnol. 12, 173–201.

    PubMed  CAS  Google Scholar 

  44. Fishwild D. M., O’Donnell S. L., Bengoechea T., Hudson D. V., Harding F., Bernhard S. L., et al. (1996). High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nature Biotechnol. 14, 845–851.

    CAS  Google Scholar 

  45. Mendez M. J., Green L. L., Corvalan J. R., Jia X. C., Maynard-Currie C. E., Yang X. D., et al. (1997). Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nature Genet. 15, 146–156.

    PubMed  CAS  Google Scholar 

  46. Yang X. D., Jia X. C., Corvalan J. R., Wang P., Davis C. G., and Jakobovits A. (1999). Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 59, 1236–1243.

    PubMed  CAS  Google Scholar 

  47. Clark M. (2000). Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol. Today 21, 397–402.

    PubMed  CAS  Google Scholar 

  48. Borrebaeck C. A. (1999). Human monoclonal antibodies: the emperor’s new clothes? Nature Biotechnol. 17, 621.

    CAS  Google Scholar 

  49. Better M., Chang C. P., Robinson R. R., and Horwitz A. H. (1988). Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.

    PubMed  CAS  Google Scholar 

  50. Skerra A. and Plückthun A. (1988). Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    PubMed  CAS  Google Scholar 

  51. Russel S. J., Hawkins R. E., and Winter G. (1993). Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21, 1081–1085.

    Google Scholar 

  52. Boublik Y., Di Bonito P., and Jones I. M. (1995). Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology 13, 1079–1084.

    PubMed  CAS  Google Scholar 

  53. Kieke M. C., Cho B. K., Boder E. T., Kranz D. M., and Wittrup K. D. (1997). Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng. 10, 1303–1310.

    PubMed  CAS  Google Scholar 

  54. Boder E. T. and Wittrup K. D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnol. 15, 553–557.

    CAS  Google Scholar 

  55. Hanes J., and Plückthun A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    PubMed  CAS  Google Scholar 

  56. Schaffitzel C., Hanes J., Jermutus L., and Plückthun A. (1999). Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 231, 119–135.

    PubMed  CAS  Google Scholar 

  57. Smith G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    PubMed  CAS  Google Scholar 

  58. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., and Winter G. (1991). Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    PubMed  CAS  Google Scholar 

  59. McGuinness B. T., Walter G., FitzGerald K., Schuler P., Mahoney W., Duncan A. R., and Hoogenboom H. R. (1996). Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nature Biotechnol. 14, 1149–1154.

    CAS  Google Scholar 

  60. Persson M. A. A., Caothien R. H., and Burton D. R. (1991). Generation of diverse highaffinity human monoclonal antibodies by repertoire cloning. Proc. Natl. Acad. Sci. USA 88, 2432–2436.

    PubMed  CAS  Google Scholar 

  61. Burton D. R., Barbas C. F., Persson M. A., Koenig S., Chanock R. M., and Lerner R. A. (1991). A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88, 10,134–10,137.

    PubMed  CAS  Google Scholar 

  62. Cai X. and Garen A. (1995). Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.

    PubMed  CAS  Google Scholar 

  63. Dörsam H., Rohrbach P., Kurschner T., Kipriyanov S., Renner S., Braunagel M., et al. (1997). Antibodies to steroids from a small human naive IgM library. FEBS Lett. 414, 7–13.

    PubMed  Google Scholar 

  64. Barbas C. F., Bain J. D., Hoekstra D. M., and Lerner R. A. (1992). Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    PubMed  CAS  Google Scholar 

  65. Nissim A., Hoogenboom H. R., Tomlinson I. M., Flynn G., Midgley C., Lane D., and Winter G. (1994). Antibody fragments from a’ single pot’ phage display library as immunochemical reagents. EMBO J. 13, 692–698.

    PubMed  CAS  Google Scholar 

  66. Hoogenboom H. R. and Chames P. (2000). Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378.

    PubMed  CAS  Google Scholar 

  67. Xie M. H., Yuan J., Adams C., and Gurney A. (1997). Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist scFv. Nature Biotechnol. 15, 768–771.

    CAS  Google Scholar 

  68. Huls G. A., Heijnen I. A., Cuomo M. E., Koningsberger J. C., Wiegman L., Boel E., et al. (1999). A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nature Biotechnol. 17, 276–281.

    CAS  Google Scholar 

  69. McCafferty J. and Glover D. R. (2000). Engineering therapeutic proteins. Curr. Opin. Struct. Biol. 10, 417–420.

    PubMed  CAS  Google Scholar 

  70. Glockshuber R., Malia M., Pfitzinger I., and Plückthun A. (1990). A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362–1367.

    PubMed  CAS  Google Scholar 

  71. Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S. M., et al. (1988). Single-chain antigen-binding proteins. Science 242, 423–426.

    PubMed  CAS  Google Scholar 

  72. Huston J. S., Levinson D., Mudgett Hunter M., Tai M. S., Novotny J., Margolies M. N., et al. (1988). Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    PubMed  CAS  Google Scholar 

  73. Zhu Z., Presta L. G., Zapata G., and Carter P. (1997). Remodeling domain interfaces to enhance heterodimer formation. Protein Sci. 6, 781–788.

    PubMed  CAS  Google Scholar 

  74. Huston J. S., McCartney J., Tai M. S., Mottola Hartshorn C., Jin D., Warren F., et al. (1993). Medical applications of single-chain antibodies. Int. Rev. Immunol. 10, 195–217.

    PubMed  CAS  Google Scholar 

  75. Pugsley A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57, 50–108.

    PubMed  CAS  Google Scholar 

  76. Whitlow M., and Filpula D. (1991). Single-chain Fv proteins and their fusion proteins. Methods Companion Methods Enzymol. 2, 97–105.

    CAS  Google Scholar 

  77. Kipriyanov S. M., Dübel S., Breitling F., Kontermann R. E., and Little M. (1994). Recombinant single-chain Fv fragments carrying C-terminal cysteine residues: production of bivalent and biotinylated miniantibodies. Mol. Immunol. 31, 1047–1058.

    PubMed  CAS  Google Scholar 

  78. Plückthun A. (1994). Antibodies from Escherichia coli, in Handbook of Experimental Pharmacology, vol. 113: The Pharmacology of Monoclonal Antibodies (Rosenberg M. and Moore G. P., eds.); Springer-Verlag Berlin, Heidelberg, pp. 269–315.

    Google Scholar 

  79. Hockney R. C. (1994). Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12, 456–463.

    PubMed  CAS  Google Scholar 

  80. Knappik A. and Plückthun A. (1995). Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81–89.

    PubMed  CAS  Google Scholar 

  81. Kipriyanov S. M., Moldenhauer G., Martin A. C. R., Kupriyanova O. A., and Little M. (1997). Two amino acid mutations in an anti-human CD3 single chain Fv antibody fragment that affect the yield on bacterial secretion but not the affinity. Protein Eng. 10, 445–453.

    PubMed  CAS  Google Scholar 

  82. Duenas M., Vazquez J., Ayala M., Soderlind E., Ohlin M., Perez L., et al. (1994). Intra-and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins. Biotechniques 16, 476–477.

    PubMed  CAS  Google Scholar 

  83. Knappik A., Krebber C., and Plückthun A. (1993). The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11, 77–83.

    PubMed  CAS  Google Scholar 

  84. Bothmann H., and Plückthun A. (2000). The periplasmic Escherichia coli peptidylprolyl cistrans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17,100–17,105.

    PubMed  CAS  Google Scholar 

  85. Bothmann H. and Plückthun A. (1998). Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nature Biotechnol. 16, 376–380.

    CAS  Google Scholar 

  86. Skerra A. and Plückthun A. (1991). Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng. 4, 971–979.

    PubMed  CAS  Google Scholar 

  87. Sawyer J. R., Schlom J., and Kashmiri S. V. S. (1994). The effect of induction conditions on production of a soluble anti-tumor sFv in Escherichia coli. Protein Eng. 7, 1401–1406.

    PubMed  CAS  Google Scholar 

  88. Kipriyanov S. M., Moldenhauer G., and Little M. (1997). High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200, 69–77.

    PubMed  CAS  Google Scholar 

  89. Kipriyanov S. M., Moldenhauer G., Schuhmacher J., Cochlovius B., Von der Lieth C. W., et al. (1999). Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56.

    PubMed  CAS  Google Scholar 

  90. Kipriyanov S. M. and Little M. (1997). Affinity purification of tagged recombinant proteins using immobilized single chain Fv fragments. Anal. Biochem. 244, 189–191.

    PubMed  CAS  Google Scholar 

  91. Reiter Y., Brinkmann U., Jung S. H., Pastan I., and Lee B. (1995). Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng. 8, 1323–1331.

    PubMed  CAS  Google Scholar 

  92. Ward E. S., Gussow D., Griffiths A. D., Jones P. T., and Winter G. (1989). Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546.

    PubMed  CAS  Google Scholar 

  93. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., et al. (1993). Naturally occurring antibodies devoid of light chains. Nature 363, 446–448.

    PubMed  CAS  Google Scholar 

  94. Davies J. and Riechmann L. (1996). Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. 9, 531–537.

    PubMed  CAS  Google Scholar 

  95. Hansson M., Ringdahl J., Robert A., Power U., Goetsch L., Nguyen T. N., et al. (1999). An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology 4, 237–252.

    PubMed  CAS  Google Scholar 

  96. McConnell S. J. and Hoess R. H. (1995). Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250, 460–470.

    PubMed  CAS  Google Scholar 

  97. Koide A., Bailey C. W., Huang X., and Koide S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151.

    PubMed  CAS  Google Scholar 

  98. Beste G., Schmidt F. S., Stibora T., and Skerra A. (1999). Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA 96, 1898–1903.

    PubMed  CAS  Google Scholar 

  99. Hufton S. E., van Neer N., van den Beuken T., Desmet J., Sablon E., and Hoogenboom H. R. (2000). Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS Lett. 475, 225–231.

    PubMed  CAS  Google Scholar 

  100. Skerra A. (2000). Engineered protein scaffolds for molecular recognition. J. Mol. Recog. 13, 167–187.

    CAS  Google Scholar 

  101. Adams G. P., McCartney J. E., Tai M. S., Oppermann H., Huston J. S., Stafford W. F., et al. (1993). Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53, 4026–4034.

    PubMed  CAS  Google Scholar 

  102. McCartney J. E., Tai M. S., Hudziak R. M., Adams G. P., Weiner L. M., Jin D., et al. (1995). Engineering disulfide-linked single-chain Fv dimers [(sFv’)2] with improved solution and targeting properties: anti-digoxin 26-10 (sFv’)2 and anti-c-erbB-2 741F8 (sFv’)2 made by protein folding and bonded through C-terminal cysteinyl peptides. Protein Eng. 8, 301–314.

    PubMed  CAS  Google Scholar 

  103. Kipriyanov S. M., Dübel S., Breitling F., Kontermann R. E., Heymann S., and Little M. (1995). Bacterial expression and refolding of single-chain Fv fragments with C-terminal cysteines. Cell Biophys. 26, 187–204.

    PubMed  CAS  Google Scholar 

  104. Holliger P., Prospero T., and Winter G. (1993). “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.

    PubMed  CAS  Google Scholar 

  105. Adams G. P., Schier R., McCall A. M., Crawford R. S., Wolf E. J., Weiner L. M., and Marks J. D. (1998). Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412.

    PubMed  CAS  Google Scholar 

  106. Kortt A. A., Lah M., Oddie G. W., Gruen C. L., Burns J. E., Pearce L. A., et al. (1997). Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five-and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Eng. 10, 423–433.

    PubMed  CAS  Google Scholar 

  107. Le Gall F., Kipriyanov S. M., Moldenhauer G., and Little M. (1999). Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19: effect of valency on cell binding. FEBS Lett. 453, 164–168.

    PubMed  Google Scholar 

  108. Pack P. and Pluckthun A. (1992). Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31, 1579–1584.

    PubMed  CAS  Google Scholar 

  109. Hu S., Shively L., Raubitschek A., Sherman M., Williams L. E., Wong J. Y., et al. (1996). Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56, 3055–3061.

    PubMed  CAS  Google Scholar 

  110. Kipriyanov S. M., Breitling F., Little M., and Dübel S. (1995). Single-chain antibody streptavidin fusions: tetrameric bifunctional scFv-complexes with biotin binding activity and enhanced affinity to antigen. Hum. Antibodies Hybridomas 6, 93–101.

    PubMed  CAS  Google Scholar 

  111. Kipriyanov S. M., Little M., Kropshofer H., Breitling F., Gotter S., and Dübel S. (1996). Affinity enhancement of a recombinant antibody: formation of complexes with multiple valency by a single-chain Fv fragment-core streptavidin fusion. Protein Eng. 9, 203–211.

    PubMed  CAS  Google Scholar 

  112. van Spriel A. B., van Ojik H. H., and van De Winkel J. G. (2000). Immunotherapeutic perspective for bispecific antibodies. Immunol. Today 21, 391–397.

    PubMed  Google Scholar 

  113. Milstein C. and Cuello A. C. (1983). Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540.

    PubMed  CAS  Google Scholar 

  114. Carter P., Ridgway J., and Zhu Z. (1995). Toward the production of bispecific antibody fragments for clinical applications. J. Hematother. 4, 463–470.

    PubMed  CAS  Google Scholar 

  115. Dall’Acqua W. and Carter P. (1998). Antibody engineering. Curr. Opin. Struct. Biol. 8, 443–450.

    CAS  Google Scholar 

  116. Merchant A. M., Zhu Z., Yuan J. Q., Goddard A., Adams C. W., Presta L. G., and Carter P. (1998). An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681.

    PubMed  CAS  Google Scholar 

  117. Shalaby M. R., Shepard H. M., Presta L., Rodrigues M. L., Beverley P. C., Feldmann M., and Carter P. (1992). Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J. Exp. Med. 175, 217–225.

    PubMed  CAS  Google Scholar 

  118. Kostelny S. A., Cole M. S., and Tso J. Y. (1992). Formation of a bispecific antibody by the use of leucine zippers. J. Immunol. 148, 1547–1553.

    PubMed  CAS  Google Scholar 

  119. de Kruif J. and Logtenberg T. (1996). Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630–7634.

    PubMed  Google Scholar 

  120. Müller K. M., Arndt K. M., Strittmatter W., and Plückthun A. (1998). The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett. 422, 259–264.

    PubMed  Google Scholar 

  121. Zuo Z., Jimenez X., Witte L., and Zhu Z. (2000). An efficient route to the production of an IgG-like bispecific antibody. Protein Eng. 13, 361–367.

    PubMed  CAS  Google Scholar 

  122. Gruber M., Schodin B. A., Wilson E. R., and Kranz D. M. (1994). Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J. Immunol. 152, 5368–5374.

    PubMed  CAS  Google Scholar 

  123. Kurucz I., Titus J. A., Jost C. R., Jacobus C. M., and Segal D. M. (1995). Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria. J. Immunol. 154, 4576–4582.

    PubMed  CAS  Google Scholar 

  124. Holliger P., Brissinck J., Williams R. L., Thielemans K., and Winter G. (1996). Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng. 9, 299–305.

    PubMed  CAS  Google Scholar 

  125. Kipriyanov S. M., Moldenhauer G., Strauss G., and Little M. (1998). Bispecific CD3 × CD19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer 77, 763–772.

    PubMed  CAS  Google Scholar 

  126. Perisic O., Webb P. A., Holliger P., Winter G., and Williams R. L. (1994). Crystal structure of a diabody, a bivalent antibody fragment. Structure 2, 1217–1226.

    PubMed  CAS  Google Scholar 

  127. Zhu Z., Zapata G., Shalaby R., Snedecor B., Chen H., and Carter P. (1996). High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology 14, 192–196.

    PubMed  CAS  Google Scholar 

  128. Cochlovius B., Kipriyanov S. M., Stassar M. J. J. G., Christ O., Schuhmacher J., Strauss G., et al. (2000). Treatment of human B cell lymphoma xenografts with a CD3 × CD19 diabody and T cells. J. Immunol. 165, 888–895.

    PubMed  CAS  Google Scholar 

  129. Arndt M. A., Krauss J., Kipriyanov S. M., Pfreundschuh M., and Little M. (1999). A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplanted human Hodgkin’s tumors. Blood 94, 2562–2568.

    PubMed  CAS  Google Scholar 

  130. FitzGerald K., Holliger P., and Winter G. (1997). Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Eng. 10, 1221–1225.

    PubMed  CAS  Google Scholar 

  131. Kontermann R. E. and Müller R. (1999). Intracellular and cell surface displayed singlechain diabodies. J. Immunol. Methods 226, 179–188.

    PubMed  CAS  Google Scholar 

  132. Coloma M. J. and Morrison S. L. (1997). Design and production of novel tetravalent bispecific antibodies. Nature Biotechnol. 15, 159–163.

    CAS  Google Scholar 

  133. Alt M., Müller R., and Kontermann R. E. (1999). Novel tetravalent and bispecific IgGlike antibody molecules combining single-chain diabodies with the immunoglobulin gamma1 Fc or CH3 region. FEBS Lett. 454, 90–94.

    PubMed  CAS  Google Scholar 

  134. Müller K. M., Arndt K. M., and Plückthun A. (1998). A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 432, 45–49.

    PubMed  Google Scholar 

  135. Cochlovius B., Kipriyanov S. M., Stassar M. J., Schuhmacher J., Benner A., Moldenhauer G., and Little M. (2000). Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 × CD19 tandem diabody, and CD28 costimulation. Cancer Res. 60, 4336–4341.

    PubMed  CAS  Google Scholar 

  136. Patten P. A., Howard R. J., and Stemmer W. P. (1997). Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8, 724–733.

    PubMed  CAS  Google Scholar 

  137. Minshull J. and Stemmer W. P. (1999). Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290.

    PubMed  CAS  Google Scholar 

  138. Holt L. J., Enever C., de Wildt R. M., and Tomlinson I. M. (2000). The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11, 445–449.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Kipriyanov, S.M. (2003). Generation of Antibody Molecules Through Antibody Engineering. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:03

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:03

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics