Skip to main content

Particle-Mediated Gene Therapy of Wounds

  • Protocol
Wound Healing

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 78))

  • 2133 Accesses

Abstract

Advances in molecular biology and the understanding of the molecular basis of many diseases have provided tools necessary for a new approach to the treatment of both inherited and acquired diseases. This approach, called gene therapy, was initially focused on the correction of inherited diseases for which no therapeutic approaches were available (1,2). However, it is now clear that the technique of gene therapy can potentially be applied to the local, temporary treatment of acquired diseases, including impaired wound healing and tissue repair (3). Gene therapy is becoming a reality, and it is a particularly attractive approach for wound healing, since the wound site is often exposed, the treatment and condition should be transient, and gene products such as growth factors and cytokines suffer from problems with bioavailability and stability. Such approaches are often innovative and provide solutions to the problems inherent in cell-based drug delivery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, W. F. (1984) Prospects for human gene therapy. Science 226, 401ā€“409.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Anderson, W. F. (1992) Human gene therapy. Science 256, 808ā€“813.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Davidson, J. M., Whitsitt, J. S., Pennington, B., Ballas, C. B., Eming, S. and Benn, S. I. (1999) Gene therapy of wounds with growth factors. Curr. Top. Pathol. 93, 111ā€“121.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Martin, P. (1997) Wound healingā€”aiming for perfect skin regeneration. Science 276, 75ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Hoff, C. R. and Davidson, J. M. (1996) Cellular and biochemical mechanisms of wound repair, in Cellular and Biochemical Mechanisms of Wound Repair (Lonai, P., ed.), Harwood, London, pp. 293ā€“320.

    Google ScholarĀ 

  6. Singer, A. J. and Clark, R. A. (1999) Cutaneous wound healing. N. Engl. J. Med. 341, 738ā€“746.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Falanga, V. (1993) Chronic wounds: pathophysiologic and experimental considerations. J. Invest. Dermatol. 100, 721ā€“725.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Falanga, V. (1992) Growth factors and chronic wounds: the need to understand the microenvironment. J. Dermatol. 19, 667ā€“672.

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Bennett, N. T. and Schultz, G. S. (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am. J. Surg. 165, 728ā€“737.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Bennett, N. T. and Schultz, G. S. (1993) Growth factors and wound healing: part II. Role in normal and chronic wound healing. Am. J. Surg. 166, 74ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Pierce, G. F. and Mustoe, T. A. (1995) Pharmacologic enhancement of wound healing. Annu. Rev. Med. 46, 467ā€“481.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Lauer, G., Sollberg, S., Cole, M., Flamme, I., Sturzebecher, J., Mann, K., Krieg, T., and Eming, S. A. (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J. Invest. Dermatol. 115, 12ā€“18.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Eming, S. A., Morgan, J. R., and Berger, A. (1997) Gene therapy for tissue repair: approaches and prospects. Br. J. Plast. Surg. 50, 491ā€“500.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Friedmann, T. (1992) A brief history of gene therapy. Nat. Genet. 2, 93ā€“98.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Chandler, L. A., Doukas, J., Gonzalez, A. M., et al. (2000) FGF2-Targeted adenovirus encoding platelet-derived growth factor-B enhances de novo tissue formation. Mol. Ther. 2, 153ā€“160.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Spector, J. A., Mehrara, B. J., Luchs, J. S., Greenwald, J. A., Fagenholz, P. J., Saadeh, P. B., Steinbrech, D. S., and Longaker, M. T. (2000) Expression of adenovirally delivered gene products in healing osseous tissues. Ann. Plast. Surg. 44, 522ā€“528.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Liechty, K. W., Nesbit, M., Herlyn, M., Radu, A., Adzick, N. S., and Crombleholme, T. M. (1999) Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J. Invest. Dermatol. 113, 375ā€“383.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Felgner, P. L. and Rhodes, G. (1991) Gene therapeutics. Nature 349, 351,352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745ā€“2752.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Pagano, J. S., McCutchan, J. H., and Vaheri, A. (1967) Factors influencing the enhancement of the infectivity of poliovirus ribonucleic acid by diethylaminoethyl-dextran. J. Virol. 1, 891ā€“897.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841ā€“845.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Capecchi, M. R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479ā€“488.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Eriksson, E., Yao, F., Svensjo, T., Winkler, T., Slama, J., Macklin, M. D., Andree, C., McGregor, M., Hinshaw, V., and Swain, W. F. (1998) In vivo gene transfer to skin and wound by microseeding. J. Surg. Res. 78, 85ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Ciernik, I. F., Krayenbuhl, B. H., and Carbone, D. P. (1996). Puncture-mediated gene transfer to the skin. Hum. Gene Ther. 7, 893ā€“899.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Yang, N. S. (1992) Gene transfer into mammalian somatic cells in vivo. Crit. Rev. Biotechnol. 12, 335ā€“356.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Yang, N. S. and Sun, W. H. (1995) Gene gun and other non-viral approaches for cancer gene therapy. Nat. Med. 1, 481ā€“483.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Yang, N. S., McCabe, D. E., and Swain, W. F. (1997) Methods for particle-mediated gene transfer into skin, in Gene Therapy Protocols (Robinson, P. D., ed.), Humana, Totowa, NJ, pp. 281ā€“296.

    Google ScholarĀ 

  28. Klein, R. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1992) High-velocity microprojectiles for delivering nucleic acids into living cells. 1987. Biotechnology 24, 384ā€“386.

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Yang, N.-S., Burkholder, J., Roberts, B., Martinelli, B., and McCabe, D. (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 87, 9568ā€“9572.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Prokop, A., Kozlov, E., Carlesso, G., and Davidson, J. M. (2001) Hydrogel-based colloidal polymeric systems for protein and drug delivery: physical and chemical characterization, permeability control and applications. Adv. Polymer Sci. 160, 119ā€“173.

    ArticleĀ  Google ScholarĀ 

  31. Nanney, L. B., Paulsen, S., Davidson, M. K., Cardwell, N. L., Whitsitt, J. S., and Davidson, J. M. (2000) Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Rep. Reg. 8, 117ā€“127.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Benn, S. I., Whitsitt, J. S., Broadley, K. N., Nanney, L. B., Perkins, D., He, L., Patel, M., Morgan, J. R., Swain, W. F., and Davidson, J. M. (1996) Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin. J. Clin. Invest. 98, 2894ā€“2902.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Cheng, L., Ziegelhoffer, P. R., and Yang, N.-S. (1993) In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc. Natl. Acad. Sci. USA 90, 4455ā€“4459.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Eming, S. A., Whitsitt, J. S., He, L., Krieg, T., Morgan, J. R., and Davidson, J. M. (1999) Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J. Invest. Dermatol. 112, 297ā€“302.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Lu, B., Scott, G., and Goldsmith, L. A. (1996) A model for keratinocyte gene therapy: preclinical and therapeutic considerations. Proc. Assoc. Am. Physician 108, 165ā€“172.

    CASĀ  Google ScholarĀ 

  36. Andree, C., Swain, W. F., Page, C. P., Macklin, M. D., Slama, J., Hatzis, D., and Eriksson, E. (1994) In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc. Natl. Acad. Sci. USA 91, 12,188ā€“12,192.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Sun, L., Xu, L., Chang, H., Henry, F. A., Miller, R. M., Harmon, J. M., and Nielsen, T. B. (1997) Transfection with aFGF cDNA improves wound healing. J. Invest. Dermatol. 108, 313ā€“318.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Mahvi, D. M., Burkholder, J. K., Turner, J., Culp, J., Malter, J. S., Sondel, P. M., and Yang, N. S. (1996) Particle-mediated gene transfer of granulocyte-macrophage colony-stimulating factor cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum. Gene Ther. 7, 1535ā€“1543.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Haynes, J. R. (1999) Genetic vaccines. Infect. Dis. Clin. North Am. 13, 11ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Olsen, C. W. (2000) DNA vaccination against influenza viruses: a review with emphasis on equine and swine influenza. Vet. Microbiol. 74, 149ā€“164.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Johnston, S. A. and Tang, D. C. (1993) The use of microparticle injection to introduce genes into animal cells in vitro and in vivo. Genet. Eng. 15, 225ā€“236.

    CASĀ  Google ScholarĀ 

  42. Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C., and Robinson, H. L. (1995) DNA vaccines: a novel approach to immunization. Int. J. Immunopharmacol. 17, 79ā€“83.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Tuting, T., Gambotto, A., Baar, J., Davis, I. D., Storkus, W. J., Zavodny, P. J., Narula, S., Tahara, H., Robbins, P. D., and Lotze, M. T. (1997) Interferon-alpha gene therapy for cancer: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells are both effective strategies for gene delivery in murine tumor models. Gene Ther. 4, 1053ā€“1060.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Tuting, T., Storkus, W. J., and Falo, L. D. Jr. (1998) DNA immunization targeting the skin: molecular control of adaptive immunity. J. Invest. Dermatol. 111, 183ā€“188.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Elder, E. M., Lotze, M. T., and Whiteside, T. L. (1996) Successful culture and selection of cytokine gene-modified human dermal fibroblasts for the biologic therapy of patients with cancer. Hum. Gene Ther. 7, 479ā€“487.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Rakhmilevich, A. L., Turner, J., Ford, M. J., McCabe, D., Sun, W. H., Sondel, P. M., Grota, K., and Yang, N. S. (1996) Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc. Natl. Acad. Sci. USA 93, 6291ā€“6296.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Pierce, G. F., Mustoe, T. A., Senior, R. M., Reed, J., Griffin, G. C., Thomason, A., and Deuel, T. F. (1988) In vivo incisional wound healing augmented by platelet-derived growth factor and recombinant c-sis gene homodimeric proteins. J. Exp. Med. 167, 974ā€“987.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Bryant, M., Drew, G. M., Houston, P., Hissey, P., Campbell, C. J., and Braddock, M. (2000) Tissue repair with a therapeutic transcription factor. Hum. Gene Ther. 11, 2143ā€“2158.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Bittner, M., Halle, J.-P., Regenbogen, J., Hof, P., Dopazo, A., Reitmaier, B., Werner, S., DasGupta, J., Davidson, J., and Goppelt, A. (2001) Identification of target genes for the development of innovative drugs to heal chronic wounds. Wound Rep. Reg. 9, 146.

    Google ScholarĀ 

  50. Yayon, A. and Klagsbrun, M. (1990) Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: reversal by suramin. Proc. Natl. Acad. Sci. USA 87, 5346ā€“5350.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., and Benaron, D. A. (1995) Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593ā€“603.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Contag, P. R., Olomu, I. N., Stevenson, D. K., and Contag, C. H. (1998) Bioluminescent indicators in living mammals. Nat. Med. 4, 245ā€“247.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Bou-Gharios, G., Garrett, L. A., Rossert, J., Niederreither, K., Eberspaecher, H., Smith, C., Black, C., and Crombrugghe, B. (1996) A potent far-upstream enhancer in the mouse pro alpha 2(I) collagen gene regulates expression of reporter genes in transgenic mice. J. Cell. Biol. 134, 1333ā€“1344.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Chatziantoniou, C., Boffa, J. J., Ardaillou, R., and Dussaule, J. C. (1998) Nitric oxide inhibition induces early activation of type I collagen gene in renal resistance vessels and glomeruli in transgenic mice: role of endothelin. J. Clin. Invest. 101, 2780ā€“2789.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Davidson, J.M., Eming, S.A., Dasgupta, J. (2003). Particle-Mediated Gene Therapy of Wounds. In: DiPietro, L.A., Burns, A.L. (eds) Wound Healing. Methods in Molecular Medicineā„¢, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-332-1:433

Download citation

  • DOI: https://doi.org/10.1385/1-59259-332-1:433

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-999-5

  • Online ISBN: 978-1-59259-332-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics