Skip to main content

Endothelial Cell Migration Assay

A Quantitative Assay for Prediction of In Vivo Biology

  • Protocol
Wound Healing

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 78))

  • 2352 Accesses

Abstract

Angiogenesis, the growth of new blood vessels from preexisting ones, is one of the essential phenotypes of tumor formation and is also important in a number of normal physiological processes including growth and development (1), wound healing (2), and reproduction (3-5). An inadequate amount of angiogenesis contributes to ulcer formation (6), and excessive angiogenesis contributes to the pathology of a number of conditions including arthritis, psoriasis, and solid tumors. In a series of now classic experiments, Folkman and colleagues demonstrated that solid tumors could not grow any larger than 2 to 3 mm in diameter without being able to induce their own blood supply (7). Whether or not angiogenesis occurs in a particular tissue depends on the balance between the relative amounts of molecules that induce and molecules that inhibit angiogenesis (8). In normal tissues, blood vessels are usually quiescent and cells usually secrete low levels of inducers and high levels of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flamme, I., Frolich, T., and Risau, W. (1997) Molecular mechanisms of vasculogenesis and embryonic-angiogenesis. J. Cell Physiol. 173, 206ā€“210.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Arnold, F. and West, D. C. (1991) Angiogenesis in wound healing. Pharmacol. Ther. 52, 407ā€“422.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Welsh, A. O. and Enders, A. C. (1991) Chorioallantoic placenta formation in the rat: Angiogenesis and maternal blood circulation in the mesometrial region of the implantation chamber prior to placenta formation. Am. J. Anat. 192, 347ā€“365.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Torry, R. J. and Rongish, B. J. (1992) Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am. J. Reprod. Immun. 27, 171ā€“179.

    CASĀ  Google ScholarĀ 

  5. Rogers, P. A., Abberton, K. M., and Susil, B. (1991) Endothelial cell migratory signal produced by human endometrium during the menstrual cycle. Hum. Reprod. 7, 1061ā€“1066.

    Google ScholarĀ 

  6. Folkman, J., Szabo, S., Stovroff, M., McNeil, P., Li, W., and Shing, Y. (1991) Duodenal ulcer: discovery of a new mechanism and development of angiogenic therapy that accelerate healing. Ann. Surg. 214, 414ā€“425.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Folkman J. (1995) Tumor angiogenesis, in The Molecular Basis of Cancer (Mendelsohn, J., Howley, P. M., Israel, M. A., and Liotta, L. A., eds.), W.B. Saunders, Philadelphia, pp. 206ā€“232.

    Google ScholarĀ 

  8. Bouck, N., Stellmach, V., and Hsu, H. (1995) How tumors become angiogenic. Adv. Cancer Res. 69, 35ā€“174.

    Google ScholarĀ 

  9. Risau, W. (1990) Angiogenic growth factors. Prog. Growth Factor Res. 2, 71ā€“79.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671ā€“674.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Folkman, J. and Ingber, D. E. (1987) Angiostatic steroids: Method of discovery and mechanism of action. Ann. Surg. 206, 374ā€“383.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Folkman, J. and Klagsburn, M. (1987) Angiogenic factors. Science 235, 442ā€“447.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Pepper, M. S., Vassalli, J. D., Montesano, R., and Orci, L. (1987) Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell. Biol. 105, 2535ā€“2541.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Pepper, M. S., Spray, D. C., Chanson, M., Montesano, R., Orci, L., and Meda, P. (1989) Junctional communication is induced in migrating capillary endothelial cells. J. Cell. Biol. 109, 3027ā€“3038.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J. D. (1990) Transforming growth factor beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell. Biol. 111, 743ā€“755.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Maciag, T., Kadish, J., Wilkins, L., Stemerman, M. B., and Weinstein, R. (1982) Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol. 94, 511ā€“520.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Madri, J. A. and Pratt, B. M. (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34, 85ā€“91.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Nicosia, R. F. and Ottinetti, A. (1990) Growth of microvessels in serum-free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab. Invest. 63, 115ā€“122.

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Zetter, B. R. (1987) Assay of capillary endothelial cell migration. Meth. Enzym. 147, 135ā€“144.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Rupnick, M. A., Stokes, C. L., Williams, S. K., and Lauffenburger, D. A. (1988) Quantitative analysis of random motility of human microvessel endothelial cells using a liner under agarose assay. Lab. Invest. 59, 363ā€“372.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Obeso, J. L. and Auerbach, R. (1984) A new microtechnique for quantitating cell movement in vitro using polystyrene bead monolayers. J. Immunol. Meth. 70, 141ā€“152.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Furcht, L. T. (1996) Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab. Invest. 55, 505ā€“509.

    Google ScholarĀ 

  23. Falk, W., Goodwin, R. H. Jr., and Leonard, E. J. (1980) A 48-well microchemotaxis assay for rapid and accurate measurement of leukocyte migration. J. Immunol. Meth. 33, 239ā€“247.

    CASĀ  Google ScholarĀ 

  24. Harvath, L., Falk, W., and Leonard, E. J. (1980) Rapid quantification of neutrophil chemotaxis: use of polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J. Immunol. Meth. 37, 39ā€“45.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Rastinejad, F., Polverini, P. J., and Bouck, N. P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345ā€“355.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Dawson, D. W., Volpert, O. V., Gillis, P., Crawford, S. E., Xu, H., Benedict, W., and Bouck, N. P. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245ā€“248.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter R. M. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798ā€“1801.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., and Bouck, N. (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol. 122, 497ā€“511.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Dawson, D. W., Volpert, O. V., Pearce, S. F., Schneider, A. J., Silverstein, R. L., Henkin, J., and Bouck, N. P. (1999) Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol. Pharmacol. 55, 332ā€“338.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Nissen, N. N., Polverini, P. J., Koch, A. E., Volin, M. V., Gamelli, R. L., and DiPietro, L. A. (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol. 152, 1445ā€“1452.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Nissen, N. N., Polverini, P. J., Gamelli, R. L., and DiPietro, L. A. (1996) Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds. Surgery 119, 457ā€“465.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Lingen, M. W., Polverini, P. J., and Bouck, N. P. (1996) Retinoic acid induces cells cultured from oral squamous cell carcinomas to become anti-angiogenic. Am. J. Pathol. 149, 247ā€“258.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Lingen, M. W., DiPietro, L. P., Solt, D. B., Bouck, N. P., and Polverini, P. J. (1997) The angiogenic switch in hamster buccal pouch keratinocytes is dependent on TFGĪ²-1 and is unaffected by ras activation. Carcinogenesis 18, 329ā€“338.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Lingen, M. W., Polverini, P. J., and Bouck, N. P. (1998) Retinoic acid and interferon alpha act synergistically as antiangiogenic and antitumor agents against human head and neck squamous cell carcinoma. Cancer Res. 58, 5551ā€“5558.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Dvorak, H. F., Nagy, J. A., Dvorak, J. T., and Dvorak, A. M. (1994) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 145, 510ā€“514.

    Google ScholarĀ 

  36. Liss, C., Fekete, M. J., Hasina, R., Lam, C. D., and Lingen, M. W. (2001) Characterization of a paracrine loop for the expression of the angiogenic phenotype in head and neck cancer. Int. J. Cancer 93, 781ā€“785.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lingen, M.W. (2003). Endothelial Cell Migration Assay. In: DiPietro, L.A., Burns, A.L. (eds) Wound Healing. Methods in Molecular Medicineā„¢, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-332-1:337

Download citation

  • DOI: https://doi.org/10.1385/1-59259-332-1:337

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-999-5

  • Online ISBN: 978-1-59259-332-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics