Detection of FMR1 Trinucleotide Repeat Expansion Mutations Using Southern Blot and PCR Methodologies

  • Jack Tarleton
Part of the Methods in Molecular Biology™ book series (MIMB, volume 217)

Abstract

Fragile X syndrome, caused by the loss or diminution of the FMR1 (FRAXA - chromosomal locus Xq27.3) encoded protein, FMRP, results in mild to moderate mental retardation as its hallmark. Patients with the syndrome often vary dramatically in presentation with a range of intellectual and behavioral deficits, and provide a diagnostic challenge for clinicians due to the subtle nature of the physical phenotype (1,2). Insta bility of a CGG repeat segment contained within FMR1 exon 1 is the molecular basis for nearly all mutations (>99%) in the gene and leads to reduced or complete loss of FMRP (3, 4, 5, 6, 7, 8). The variable phenotype occurs related to variation in FMR1 expression mediated by the extent of CGG repeat expansion and a secondary epigenetic feature: the aberrant hypermethylation of CpG dinucleotides contained in the CGG repeat segment and surrounding regions of the gene (9). Thus, molecular genetic studies of FMR1 are utilized to confirm a clinical diagnosis of fragile X syndrome, and perhaps just as importantly, to exclude an alteration in FMR1 as an explanation for nonspecific mental retardation in a patient. For clinical molecular diagnosis, the variety of FMR1 alleles and the myriad of possible alterations in the gene present a diagnostic challenge for which no one detection method has proven fully satisfactory. Here, a dual approach to FMR1 repeat expansion mutation detection utilizing Southern blot and polymerase chain reaction (PCR) methodologies is presented (10,11). The reader is referred to published technical standards for fragile X analysis to supplement the interpretation of molecular genetic results for patients (12).

References

  1. 1.
    Tarleton, J. C. and Saul, R. A. (1993) Molecular genetic advances in fragile X syndrome. J. Pediatr. 122, 169–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Tarleton, J. and Saul, R. A. (updated June, 2000) Fragile X Syndrome, in: GeneClinics: Medical Genetics Knowledge Base [database online]. Copyright, University of Washington, Seattle, USA. Available online at http://www.geneclinics.org/profiles/fragileX.Accessed1/8/01.Google Scholar
  3. 3.
    Oberle, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., et al. (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102.CrossRefGoogle Scholar
  4. 4.
    Kremer, E. J., Pritchard, M., Lynch, M., Yu, S., Holman, K., Baker, E., et al. (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714.PubMedCrossRefGoogle Scholar
  5. 5.
    Verkerk, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y-H., Kuhl, D. P. A., Pizzuti, A., et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.PubMedCrossRefGoogle Scholar
  6. 6.
    Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., et al. (1991) Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–1181.CrossRefGoogle Scholar
  7. 7.
    Sutcliffe, J. S., Nelson, D. L., Zhang, F., Pieretti, M., Caskey, C. T., Saxe, D., and Warren, S. T. (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. Mol. Genet. 1, 397–400.PubMedCrossRefGoogle Scholar
  8. 8.
    Pieretti, M., Zhang, F., Fu, Y-H., Warren, S. T., Oostra, B. A., Caskey, C. T., and Nelson, D. L. (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822.PubMedCrossRefGoogle Scholar
  9. 9.
    McConkie-Rosell, A., Lachiewicz, A. M., Spiridigliozzi, G. A., Tarleton, J., Schoenwald, S., Phelan, M. C., et al. (1993) Evidence that methylation of the FMR-1 locus is responsible for variable phenotypic expression of the fragile X syndrome. Am. J. Hum. Genet. 53, 800–809.PubMedGoogle Scholar
  10. 10.
    Rousseau, F., Heitz, D., Biancalana, V., Blumenfeld, S., Kretz, C., Boue, J., et al. (1991) Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N. Engl. J. Med. 325, 1673–1681.PubMedCrossRefGoogle Scholar
  11. 11.
    Fu, Y-H., Kuhl, D. P. A., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., et al. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058.PubMedCrossRefGoogle Scholar
  12. 12.
    Maddalena, A., Richards, C.S., McGinniss, M.J., Brothman, A., Desnick, R.J., Grier, R.E., et al. (2001) Technical standards and guidelines for fragile X: the first of a series of disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics. Genet. Med. 3, 200–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Nolin, S. L., Lewis, F.A., III, Ye, L. L., Houck, G.E., Glicksman, A. E., Limprasert, P., et al. (1996) Familial transmission of the FMR1 repeat. Am. J. Hum. Genet. 59, 1252–1261.PubMedGoogle Scholar
  14. 14.
    Warren, S. T. and Nelson, D. L. (1994) Advances in molecular analysis of fragile X Syndrome. JAMA 271, 536–542.PubMedCrossRefGoogle Scholar
  15. 15.
    Eichler, E. E., Holden, J. J. A., Popovich, B. W., Reiss, A. L., Snow, K., Thibodeau, S. N., et al. (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat. Genet. 8, 88–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Kunst, C. B. and Warren, S. T. (1994) Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861.PubMedCrossRefGoogle Scholar
  17. 17.
    Orrico, A., Galli, L., Dotti, M. T., Plewnia, K., Censini, S., and Federico, A. (1998) Mosa-icism for full mutation and normal-sized allele of the FMR1 gene: a new case. Am. J. Med. Genet. 78, 341–344.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmucker, B. and Seidel, J. (1999) Mosaicism for a full mutation and a normal size allele in two fragile X males. Am. J. Med. Genet. 84, 221–225.PubMedCrossRefGoogle Scholar
  19. 19.
    Gedeon, A. K., Baker, E., Robinson, H., Partington, M. W., Gross, B., Manca, A., et al. (1992) Fragile X syndrome without CCG amplification has an FMR1 deletion. Nat. Genet. 1, 341–344.PubMedCrossRefGoogle Scholar
  20. 20.
    Tarleton, J., Richie, R., Schwartz, C., Rao, K., Aylsworth, A. S., and Lachiewicz, A. (1993) An extensive de novo deletion removing FMR1 in a patient with mental retardation and the fragile X syndrome phenotype. Hum. Mol. Genet. 2, 1973–1974.PubMedCrossRefGoogle Scholar
  21. 21.
    Wohrle, D., Kotzot, D., Hirst, M. C., Manca, A., Korn, B., Schmidt, A., et al. (1992) A microdeletion of less than 250 kb, including the proximal part of the FMR-1 gene and the fragile-X site, in a male with the clinical phenotype of fragile X syndrome. Am. J. Hum. Genet. 51, 299–306.PubMedGoogle Scholar
  22. 22.
    Hammond, L. S, Macias, M. M, Tarleton, J. C., and Pai, G. S. (1997) Fragile X syndrome and deletions in FMR1: new case and review of the Lature. Am. J. Med. Genet. 72, 430–434.PubMedCrossRefGoogle Scholar
  23. 23.
    De Boulle, K., Verkerk, A. J. M. H., Reyniers, E., Vits, L., Hendrickx, J., Van Roy, B., et al. (1993) A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat. Genet. 3, 31–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Lugenbeel, K. A., Peier, A. M., Carson, N. L., Chudley, A. E., and Nelson, D. L. (1995) Intragenic loss of function mutations demonstrate the primary role of FMR1 in fragile X syndrome. Nat. Genet. 10, 483–485.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Jack Tarleton
    • 1
  1. 1.Fullerton Genetics CenterAsheville

Personalised recommendations