Skip to main content

Utilizing NMR to Study the Structure of Growth-Inhibitory Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

Abstract

The underlying premise of structural biology is that the fundamental understanding of biological functions lies in the three-dimensional structures of proteins and other biopolymers. The two well-established experimental methods for determining the high-resolution structures of proteins have both contributed to the wealth of structural information available for the tumor suppressor genes. The tumor suppressor proteins whose structures have been determined by nuclear magnetic resonance (NMR) spectroscopy are listed in Table 1. Although X-ray crystallography plays a central role in high-throughput structure determination in the current structural genomics efforts, several features of NMR spectroscopy make it extremely well suited for three-dimensional structure determination as well as for the structure-function analysis of proteins (1,2).

Table 1 Tumor Suppressor Proteins Whose Structures Have Been Determined by NMR Spectroscopy in Solution, with Protein Data Bank Identification (PDB ID) Codes (http://www.rcsb.org/pdb/)

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Montelione, G. T., Zheng, D., Huang, Y. J., Gunsalus, K. C., and Szyperski, T. (2000) Protein NMR spectroscopy in structural genomics. Nature Struct. Biol., Struct. Genomics Suppl. 7, 982–985.

    Article  CAS  Google Scholar 

  2. Wuthrich, K. (1998) The second decade into the third millenium. Nat. Struct. Biol., NMR Suppl. 5, 492–495.

    Article  CAS  Google Scholar 

  3. Marassi, F. M. and Opella, S. J. (1998) NMR structural studies of membrane proteins. Curr. Opin. Struct. Biol. 8, 640–648.

    Article  PubMed  CAS  Google Scholar 

  4. Opella, S. J., Ma, C., and Marassi, F. M. (2001). NMR of membrane associated peptides and proteins, Meth. Enzymol. 339, in press.

    Google Scholar 

  5. Schuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering high affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534.

    Article  Google Scholar 

  6. Moore, J. M. (1999) NMR screening in drug discovery. Curr. Opin. Biotechnol. 10, 54–58.

    Article  PubMed  CAS  Google Scholar 

  7. Clore, G. M. and Gronenborn, A. M. (1997) NMR structures of proteins and protein complexes beyond 20,000 Mr. Nat. Struct. Biol. NMR Suppl. 4, 849–853.

    CAS  Google Scholar 

  8. Gardner, K. H. and Kay, L. E. (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406.

    Article  PubMed  CAS  Google Scholar 

  9. Pervushin, K., Riek, R., Wider, G., and Wuthrich K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371.

    Article  PubMed  CAS  Google Scholar 

  10. Veglia, G. and Opella, S. J. (2000) Lanthanide ion binding to adventitious sites aligns membrane proteins in micelles for solution NMR spectroscopy. J. Am. Chem. Soc. 122, 11733–11734.

    Article  CAS  Google Scholar 

  11. Ma, C. and Opella, S. J. (2000) Lanthanide ions bind specifically to an added EF-hand and orient a membrane protein in micelles for solution NMR spectroscopy. J. Magn. Reson. 146, 381–384.

    Article  PubMed  CAS  Google Scholar 

  12. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  13. Clore, G. M. and Gronenborn, A. M. (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24, 479–564.

    Article  PubMed  CAS  Google Scholar 

  14. Kigawa, T., Yabuki, T., Yoshida, Y., et al. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19.

    Article  PubMed  CAS  Google Scholar 

  15. Studier, F. W. and Moffat, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  16. Edwards, A. M., Arrowsmith, C. H., Christendat, D., et al. (2000) Protein production:feeding the crystallographers and NMR spectroscopists. Nat. Struct. Biol. Struct. Genomics Suppl. 7, 970–972.

    CAS  Google Scholar 

  17. Ikura, M., Krinks, M., Torchia, D. A., and Bax, A. (1990) An efficient NMR approach for obtaining sequence-specific resonance assignments of larger proteins based on multiple isotopic labeling. FEBS Lett. 266, 155–158.

    Article  PubMed  CAS  Google Scholar 

  18. Ikura, M., Kay, L. E., and Bax, A. (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667.

    CAS  Google Scholar 

  19. Moseley, H. N. and Montelione, G. T. (1999) Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struct. Biol. 9, 635–642.

    Article  PubMed  CAS  Google Scholar 

  20. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333.

    Article  PubMed  CAS  Google Scholar 

  21. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  22. Tolman, J. R., Flanagan, J. M., Kennedy, M. A., and Prestegard, J. H. (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283.

    Article  PubMed  CAS  Google Scholar 

  23. Tjandra, N., Grzesiek, S. and Bax, A. (1996) Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272.

    Article  CAS  Google Scholar 

  24. Tjandra, N. and Bax, A. (1997). Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  25. Sass, J., Cordier, F., Hoffmann, A., et al. (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J. Am. Chem. Soc. 121, 2047–2055.

    Article  CAS  Google Scholar 

  26. Hansen, M. R., Mueller, L., and Pardi, A. (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  27. Clore, G. M., Starich, M. R., and Gronenborn, A. M. (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572.

    Article  CAS  Google Scholar 

  28. Brunger, A. T., Adams, P. D., Clore, G. M., et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921.

    CAS  Google Scholar 

  29. Prestegard, J. H. (1998) New techniques in structural NMR—anisotropic interactions. Nat. Struct. Biol. NMR Suppl. 5, 517–522.

    Article  CAS  Google Scholar 

  30. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  31. Arrowsmith, C.H. (1999) Structure and function of the p53 family. Cell Death Diff. 6, 1169–1173.

    Article  CAS  Google Scholar 

  32. Mulder, F. A., Ayed, A., Yang, D., Arrowsmith, C. H., and Kay, L. E. (2000) Assignment of 1H(N), 15N, 13C(alpha), 13CO and 13C(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. J. Biomol. NMR 18, 173–176.

    Article  PubMed  CAS  Google Scholar 

  33. Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P. (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355.

    Article  PubMed  CAS  Google Scholar 

  34. orina, S. and Pavletich, N. P. (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001.

    Article  Google Scholar 

  35. Kussie, P. H., Gorina, S., Marechal, V., et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953.

    Article  PubMed  CAS  Google Scholar 

  36. Stoll, R., Renner, C., Hansen, S., et al. (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40, 336–344.

    Article  PubMed  CAS  Google Scholar 

  37. Wong K. B., DeDecker, B. S., Freund, S. M., Proctor M. R., Bycroft M., and Fersht A. R. (1999) Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438–8442.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, W., Harvey, T. S., Yin, Y., Yau, P., Litchfield, D., and Arrowsmith C. H. (1994) Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1, 877–890.

    Article  PubMed  CAS  Google Scholar 

  39. Clore, G. M., Ernst, J., Clubb, R., et al. (1995) Refined solution structure of the oligomer-ization domain of the tumour suppressor p53. Nat. Struct. Biol. 2, 321–333.

    Article  PubMed  CAS  Google Scholar 

  40. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1999) Improving the packing and accuracy of NMR structure with a pseudopotential for the radius of gyration. J. Am. Chem. Soc. 121, 2337–2338.

    Article  CAS  Google Scholar 

  41. Jeffrey, P. D., Gorina, S., and Pavletich, N. P. (1995) Crystal structure of the tetramerization domain of the P53 tumor suppressor at 1.7 angstroms. Science 267, 1498.

    Article  PubMed  CAS  Google Scholar 

  42. Mittl, P. R., Chene, P., and Grutter, M. G. (1998) Crystallization and structure solution of p53 (residues 326-356) by molecular replacement using an NMR model as template. Acta Crystallogr. D54, 86–89.

    Article  PubMed  CAS  Google Scholar 

  43. Pietenpol, J. A., Tokino, T., Thiagalingam, S., El-Deiry, W. S., Kinzler, K. W., and Vogelstein, B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci USA 91, 1998–2002.

    Article  PubMed  CAS  Google Scholar 

  44. McCoy, M., Stavridi, E. S., Waterman, J. L., Wieczorek, A. M., Opella, S. J., and Hala-zonetis, T. D. (1997) Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain. EMBO J. 16, 6230.

    Article  PubMed  CAS  Google Scholar 

  45. Rustandi, R.R., Drohat, A.C., Baldisseri, D.M. Wilder, P.T., and Weber, D.J. (1998) The Ca(2+)-dependent interaction of S100B(βββ) with a peptide derived from p53. Biochemistry 37, 1951–1960.

    Article  PubMed  CAS  Google Scholar 

  46. Rustandi, R. R., Baldisseri, D. M., and Weber D. J. (2000) Structure of the negative regulatory domain of p53 bound to S100B(PP). Nat. Struct. Biol. 7, 570–574.

    Article  PubMed  CAS  Google Scholar 

  47. Baudier, J., Delphin, C, Grunwald D, Khochbin, S., and Lawrence, J. J. (1992) Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc. Natl. Acad. Sci. USA 89, 11627–11631.

    Article  PubMed  CAS  Google Scholar 

  48. Delphin, C, Ronjat, M., Deloulme, J. C, et al. (1999) Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. J. Biol. Chem. 274, 10539–10544.

    Article  PubMed  CAS  Google Scholar 

  49. Scotto, C, Deloulme, J. C, Rousseau, D., Chambaz, E., and Baudier, J. (1998) Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol. Cell Biol. 18, 4272–4281.

    PubMed  CAS  Google Scholar 

  50. Hannon, G. J. and Beach, D. (1994) p15 INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371, 257–261.

    Article  PubMed  CAS  Google Scholar 

  51. Serrano, M., Hannon, G. J., and Beach, D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD0CDK4. Nature 366, 704–707.

    Article  PubMed  CAS  Google Scholar 

  52. Guan, K. L., Jenkins, C. W, Li, Y., et al. (1994) Growth suppression by p18, a p16 INK40MTS1-and p14 INK4B0MTS2—related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8, 2939.

    Article  PubMed  CAS  Google Scholar 

  53. Guan, K. L., Jenkins, C. W, Li, Y., et al. (1996) Isolation and characterization of p19 INK4d, a p16-related inhibitor specific to CDK6 and CDK4. Mol. Biol. Cell. 7, 57–70.

    PubMed  CAS  Google Scholar 

  54. Luh, F. Y, Archer, S. J., Domaille, P. J., et al. (1997) Structure of the cyclin-dependent kinase inhibitor p19 INK4d. Nature 389, 999–1003.

    Article  PubMed  CAS  Google Scholar 

  55. Baumgartner, R., Fernandez-Catalan, C, Winoto, A., Huber, R., Engh, R. A., and Holak, T. A. (1998) Structure of human cyclin-dependent kinase inhibitor p19INK4d: comparison to known ankyrin-repeat-containing structures and implications for the dysfunction of tumor suppressor p16INK4a. Structure 6, 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  56. Li, J., Byeon, I. J. Ericson, K., Poi, M. J., O’Maille, P., Selby, T., and Tsai M. D (1999) Tumor suppressor INK4: determination of the solution structure of p18INK4C and demonstration of the functional significance of loops in p18INK4C and p16INK4A. Biochemistry 38, 2930–2940.

    Article  PubMed  CAS  Google Scholar 

  57. Venkataramani, R., Swaminathan, K., and Marmorstein, R. (1998) Crystal structure of the CDK406 inhibitory protein p18 INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16 INK4 mutations. Nat. Struct. Biol. 5, 74–81.

    Article  PubMed  CAS  Google Scholar 

  58. Byeon, I. J., Li, J., Ericson, K., et al. (1998) Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell 1, 421–431.

    Article  PubMed  CAS  Google Scholar 

  59. Yuan, C, Selby, T. L., Li, J., Byeon, I. J., and L. Tsai, M. D. (2000) Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data. Protein Sci. 9, 1120–1128.

    Article  PubMed  CAS  Google Scholar 

  60. Laity, J. H., Chung, J., Dyson, H. J., and Wright, P. E. (2000) Alternative splicing of Wilms’ tumor suppressor protein modulates DNA binding activity through isoform-specific DNA-induced conformational changes. Biochemistry 39, 5341–5348.

    Article  PubMed  CAS  Google Scholar 

  61. Laity, J. H., Dyson, H. J., and Wright, P. E. (2000) DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. J. Mol. Biol. 295, 719–727.

    Article  PubMed  CAS  Google Scholar 

  62. Botuyan, M.V., Koth, C.M., Mer, G., et al. (1999) Binding of elongin A or a von Hippel-Lindau peptide stabilizes the structure of yeast elongin C. Proc. Natl. Acad. Sci. USA 96, 9033–9038.

    Article  PubMed  CAS  Google Scholar 

  63. Davison, T. S., Nie, X., Ma, W., et al. (2001) Structure and functionality of a designed p53 dimer. J. Mol. Biol. 307, 605–617.

    Article  PubMed  CAS  Google Scholar 

  64. Chi, S.-W., Ayed, A., and Arrowsmith, C. H. (1999) Solution structure of a conserved C-terminal domain of p73 with structural homology to the Sam domain. EMBO J. 18, 4438–4445.

    Article  PubMed  CAS  Google Scholar 

  65. Polshakov, V. I., Williams, M. A., Gargaro, A. R., et al. (1997) High-resolution solution structure of human pNR-2/pS2: a single trefoil motif protein. J. Mol. Biol. 267, 418–432.

    Article  PubMed  CAS  Google Scholar 

  66. Williams, M. A., Westley, B. R., May, F. E. B., and Feeney, J. (2001) The solution structure of the disulphide-linked homodimer of the human trefoil protein TFF1. FEBS Lett. 493, 70–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Marassi, F.M. (2003). Utilizing NMR to Study the Structure of Growth-Inhibitory Proteins. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:3

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics