Skip to main content

Somatic Cell Knockouts of Tumor Suppressor Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

  • 857 Accesses

Abstract

Gene targeting is the modification of specific DNA sequences in a living organism. Three requirements must be met in order for gene targeting to be successful (1). The process must be directed, so that it affects only the locus of choice. The targeting procedure requires specificity, such that a predetermined sequence can be inserted or substituted at the target locus. Finally, the process should be efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedivy, J. M. and Joyner, A. (1992) Gene Targeting. Freeman, San Francisco.

    Google Scholar 

  2. te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  3. Sedivy, J. M., Vogelstein, B., Liber, H. L., Hendrickson, E. A., and Rosmarin, A. (1999) Gene targeting in human cells without isogenic DNA. Science 283, 9a.

    Article  Google Scholar 

  4. Sedivy, J. M. and Dutriaux, A. (1999) Gene targeting and somatic cell genetics: a rebirth or a coming of age? Trends Genet. 15, 88–90.

    Article  PubMed  CAS  Google Scholar 

  5. Park, B. H., Vogelstein, B., and Kinzler, K.W. (2001) Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells. Proc. Natl. Acad. Sci. USA 98, 2598–2603.

    Article  PubMed  CAS  Google Scholar 

  6. Rhee, I., Jair, K. W., Yen, R. W., et al. (2000) CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  7. Chan, T. A., Hwang, P. M., Hermeking, H., Kinzler, K. W., and Vogelstein, B. (2000) Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 14, 1584–1588.

    PubMed  CAS  Google Scholar 

  8. Zhang, L., Yu, J., Park, B. H., Kinzler, K. W., and Vogelstein, B. (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992.

    Article  PubMed  CAS  Google Scholar 

  9. Chan, T. Y., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620.

    Article  PubMed  CAS  Google Scholar 

  10. Faria, T. N., Mendelsohn, C., Chambon, P., and Gudas, L. J. (1999) The targeted disruption of both alleles of RARß2 in F9 cells results in the loss of retinoic acid-associated growth arrest. J. Biol. Chem. 274, 26783–26788.

    Article  PubMed  CAS  Google Scholar 

  11. Lahti, J. M. (1999) Use of gene knockouts in cultured cells to study apoptosis. Methods 17, 305–312.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, J., Wei, W., and Sedivy, J. M. (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834.

    Article  PubMed  CAS  Google Scholar 

  13. Polejaeva, I. A., Chen, S. H., Vaught, T. D., et al. (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.

    Article  PubMed  CAS  Google Scholar 

  14. McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.

    Article  PubMed  CAS  Google Scholar 

  15. Arbones, M. L., Austin, H. A., Capon, D. J., and Greenburg, G. (1994) Gene targeting in normal somatic cells: inactivation of the interferon-gamma receptor in myoblasts. Nat. Genet. 6, 90–97.

    Article  PubMed  CAS  Google Scholar 

  16. Hanson, K. D. and Sedivy, J. M. (1995) Analysis of biological selections for high-efficiency gene targeting. Mol. Cell. Biol. 15, 45–51.

    PubMed  CAS  Google Scholar 

  17. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-onco-gene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  18. Jasin, M. and Berg, P. (1988) Homologous integration in mammalian cells without target gene selection. Genes Dev. 2, 1353–1363.

    Article  PubMed  CAS  Google Scholar 

  19. Sedivy, J. M. and Sharp, P. A. (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 227–231.

    Article  PubMed  CAS  Google Scholar 

  20. Abuin, A. and Bradley, A. (1996) Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16, 1851–1856.

    PubMed  CAS  Google Scholar 

  21. Ray, M. K., Fagan, S. P., and Brunicardi, F. C. (2000) The Cre-loxP system: a versatile tool for targeting genes in a cell-and stage-specific manner. Cell Transplant. 9, 805–815.

    PubMed  CAS  Google Scholar 

  22. Zhang, H., Hasty, P., and Bradley, A. (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol. Cell. Biol. 14, 2404–2410.

    PubMed  CAS  Google Scholar 

  23. Medina-Martinez, O., Bradley, A., and Ramirez-Solis, R. (2000) A large targeted deletion of Hoxb1-Hoxb9 produces a series of single-segment anterior homeotic transformations. Dev. Biol. 222, 71–83.

    Article  PubMed  CAS  Google Scholar 

  24. Mateyak, M. K., Obaya, A. J., Adachi, S., and Sedivy, J. M. (1997) Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048.

    PubMed  CAS  Google Scholar 

  25. Davies, M. V. and Kaufman, R. J. (1992) The sequence context of the initiation codon in the encephalomyocarditis virus leader modulates efficiency of internal translation initiation. J. Virol. 66, 1924–1932.

    PubMed  CAS  Google Scholar 

  26. Chappell, S. A., Edelman, G. M., and Mauro, V. P. (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. USA 97, 1536–1541.

    Article  PubMed  CAS  Google Scholar 

  27. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, Y. M., Buchholz, F., Muyrers, J. P., and Stewart, A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, Q., Li, M. Z., Leibham, D., Cortez, D., and Elledge, S. J. (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8, 1300–1309.

    Article  PubMed  CAS  Google Scholar 

  30. Yu, D., et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

  31. Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Hemmer, R., Wei, W., Dutriaux, A., Sedivy, J.M. (2003). Somatic Cell Knockouts of Tumor Suppressor Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics