Skip to main content

Microarray Approaches for Analysis of Tumor Suppressor Gene Function

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

  • 856 Accesses

Abstract

Many tumor suppressor genes are known to function at least in part through regulation of the transcription of downstream effector genes (Table 1). A major example of such a transcriptional regulator is p53, one of the most commonly mutated tumor suppressor genes in human cancer (1) and hence one of the most exhaustively studied. Estimates based on a survey of p53 binding sites in the genome put the number of p53-regulated genes at several hundred (2), while the finding that p53 can affect the expression of some genes in the absence of direct DNA binding may increase this number (3). Genes known to be regulated by p53 play roles in many important cellular processes, including cell cycle progression, DNA repair, and apoptosis (Table 2). Loss of such a tumor suppressor gene can disrupt the regulation of multiple genes, affecting numerous cellular pathways and leading to a variety of phenotypic changes. Comparative analysis of complex patterns of gene expression can therefore provide a powerful tool to develop insight into mechanisms of tumor suppressor gene function involving transcriptional regulation.

Table 1 Tumor Suppressor Genes That Can Act as Transcription Factors
Table 2 Examples of Tp53 Effector Genes with Roles in Cellular Stress Processes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine, A. J., Momand J., and Finlay, C. A. (1991) The p53 tumor suppressor gene. Nature 351, 453–456.

    Article  PubMed  CAS  Google Scholar 

  2. Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266, 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  3. Zhan, Q., Chen, I. T, Antinore, M. J., and Fornace, A. J., Jr. (1998) Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol. Cell. Biol. 18, 2768–2778.

    PubMed  CAS  Google Scholar 

  4. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  5. Fargnoli, J., Holbrook, N. J., and Fornace, A. J., Jr. (1990) Low-ratio hybridization subtraction. Anal. Biochem. 187, 364–373.

    Article  PubMed  CAS  Google Scholar 

  6. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  7. Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  8. Okamoto, T., Suzuki, T., and Yamamoto, N. (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat. Biotechnol. 18, 438–441.

    Article  PubMed  CAS  Google Scholar 

  9. Medlin, J. (2001) Array of hope for gene technology. Environ. Health Perspect. 109, A34–A37.

    PubMed  CAS  Google Scholar 

  10. Shoemaker, D. D., Schadt, E. E., Armour, C. D., et al. (2001) Experimental annotation of the human genome using microarray technology. Nature 409, 922–927.

    Article  PubMed  CAS  Google Scholar 

  11. DeRisi, J., Penland, L., Brown, P. O., et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.

    Article  PubMed  CAS  Google Scholar 

  12. Koch-Paiz, C. A., Momenan, R., Amundson, S. A., Lamoreaux, E., and Fornace, A. J., Jr. (2000) Estimation of relative mRNA content by filter hybridization to a polyuridylic probe. Biotechniques 29, 706–714.

    PubMed  CAS  Google Scholar 

  13. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  14. Alon, U., Barkai, N., Notterman, D. A., et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750.

    Article  PubMed  CAS  Google Scholar 

  15. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [see comments]. Nature 403, 503–511.

    Article  PubMed  CAS  Google Scholar 

  16. Bittner, M., Meltzer, P., Chen, Y., et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540.

    Article  PubMed  CAS  Google Scholar 

  17. Hedenfalk, I., Duggan, D., Chen, Y., et al. (2001) Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548.

    Article  PubMed  CAS  Google Scholar 

  18. Monks, A., Scudiero, D., Skehan, P., et al. (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83, 757–766.

    Article  PubMed  CAS  Google Scholar 

  19. Grever, M. R., Schepartz, S. A., and Chabner, B. A. (1992) The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 19, 622–638.

    PubMed  CAS  Google Scholar 

  20. Ross, D. T., Scherf, U., Eisen, M. B., et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235.

    Article  PubMed  CAS  Google Scholar 

  21. Mai, M., Yokomizo, A., Qian, C., et al. (1998) Activation of p73 silent allele in lung cancer. Cancer Res. 58, 2347–2349.

    PubMed  CAS  Google Scholar 

  22. Scherf, U., Ross, D. T., Waltham, M., et al. (2000) A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24, 236–244.

    Article  PubMed  CAS  Google Scholar 

  23. O’Connor, P. M., Jackman, J., Bae, I., et al. (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–4300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Amundson, S.A., Fornace, A.J. (2003). Microarray Approaches for Analysis of Tumor Suppressor Gene Function. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:141

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics