Skip to main content

Hereditary Breast and Ovarian Cancer Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

Abstract

Breast cancer affects one out of every 10 women in industrialized countries, and is a leading cause of cancer morbidity and mortality in women. Ovarian cancer, although less common than breast cancer, is very difficult to treat effectively, in part due to difficulty in early diagnosis of the disease. Most cases of breast or ovarian cancer appear to occur without a clear family history of the disease. These sporadic cases account for approximately 95% of all breast cancer. Possibly, low-penetrance genes contribute as risk factors to this group of cancers. However, about 5% of breast cancers occur clustered within families. Importantly, cancer in these familial syndromes characteristically manifests at a younger age than sporadic cancer. Therefore, in terms of both the number of women affected and the effect of disease on individual families, the familial breast and/or ovarian cancer syndromes have a large impact upon society. Over the past few years, the genetic basis of familial breast and ovarian cancer has become clear. It is caused by germline mutations affecting one of two autosomal tumor suppressor genes, BRCA1 and BRCA2. Surprisingly, these two genes have been found to participate in the control of homologous recombination, suggesting that they may function as tumor suppressors by regulating genome integrity maintenance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broca, P. (1866) Influence héréditaire, Traité des tumeurs (Asselin, P., ed.), Tome premier: Des tumeurs en général, Paris.

    Google Scholar 

  2. Hall, J. M., et al. (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250, 1684–1689.

    Article  PubMed  CAS  Google Scholar 

  3. Narod, S. A., et al. (1991) Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet 338, 82–83.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, S. A., Easton, D. F., Evans, D. G., and Ponder, B. A. (1992) Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat. Genet. 2, 128–131.

    Article  PubMed  CAS  Google Scholar 

  5. Neuhausen, S. L. and Marshall, C. J. (1994) Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer Res. 54, 6069–6072.

    PubMed  CAS  Google Scholar 

  6. Cornelis, R. S., et al. (1995) High allele loss rates at 17q12-q21 in breast and ovarian tumors from BRCAl-linked families. The Breast Cancer Linkage Consortium. Genes Chromosomes Cancer 13, 203–210.

    Article  PubMed  CAS  Google Scholar 

  7. Knudson, A. G., Jr. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823.

    Article  PubMed  Google Scholar 

  8. Miki, Y., et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.

    Article  PubMed  CAS  Google Scholar 

  9. Futreal, P. A., et al. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122.

    Article  PubMed  CAS  Google Scholar 

  10. Castilla, L. H., et al. (1994) Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat. Genet. 8, 387–391.

    Article  PubMed  CAS  Google Scholar 

  11. Simard, J., et al. (1994) Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat. Genet. 8, 392–398.

    Article  PubMed  CAS  Google Scholar 

  12. Friedman, L. S., et al. (1994) Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat. Genet. 8, 399–404.

    Article  PubMed  CAS  Google Scholar 

  13. BIC. (2001) Breast Cancer Information Core. http://www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/ .

  14. Wooster, R., et al. (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265, 2088–2090.

    Article  PubMed  CAS  Google Scholar 

  15. Wooster, R., et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792.

    Article  PubMed  CAS  Google Scholar 

  16. Lancaster, J. M., et al. (1996) BRCA2 mutations in primary breast and ovarian cancers. Nat. Genet. 13, 238–240.

    Article  PubMed  CAS  Google Scholar 

  17. Marcus, J. N., et al. (1996) Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer 77, 697–709.

    Article  PubMed  CAS  Google Scholar 

  18. Lakhani, S. R., et al. (1998) Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J. Natl. Cancer Inst. 90, 1138–1145.

    Article  PubMed  CAS  Google Scholar 

  19. Lakhani, S. R. (1999) The pathology of hereditary breast cancer. Dis. Markers 15, 113–114.

    PubMed  CAS  Google Scholar 

  20. Foulkes, W. D., Wong, N., Brunet, J. S., and Narod, S. A. (1998) BRCA mutations and survival in breast cancer. J. Clin. Oncol. 16, 3206–3208.

    PubMed  CAS  Google Scholar 

  21. Gaffney, D. K., et al. (1998) Response to radiation therapy and prognosis in breast cancer patients with BRCA1 and BRCA2 mutations. Radiother. Oncol. 47, 129–136.

    Article  PubMed  CAS  Google Scholar 

  22. Wagner, T. M., et al. (1998) BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int. J. Cancer 77, 354–360.

    Article  PubMed  CAS  Google Scholar 

  23. Osin, P. P. and Lakhani, S. R. (1999) The pathology of familial breast cancer: Immunohistochemistry and molecular analysis. Breast Cancer Res. 1, 36–40.

    Article  PubMed  CAS  Google Scholar 

  24. Hedenfalk, I., et al. (2001) Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson, C. A., et al. (1999) Localization of human BRCA1 and its loss in high-grade, noninherited breast carcinomas. Nat. Genet. 21, 236–240.

    Article  PubMed  CAS  Google Scholar 

  26. Dobrovic, A. and Simpfendorfer, D. (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 57, 3347–3350.

    PubMed  CAS  Google Scholar 

  27. Magdinier, F., Ribieras, S., Lenoir, G. M., Frappart, L., and Dante, R. (1998) Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene 17, 3169–3176.

    Article  PubMed  CAS  Google Scholar 

  28. Rice, J. C., Massey-Brown, K. S., and Futscher, B. W. (1998) Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene 17, 1807–1812.

    Article  PubMed  CAS  Google Scholar 

  29. Welcsh, P. L., Owens, K. N., and King, M. C. (2000) Insights into the functions of BRCA1 and BRCA2. Trends Genet. 16, 69–74.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson, C. A., et al. (1997) Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-delta11b. Oncogene 14, 1–16.

    Article  PubMed  CAS  Google Scholar 

  31. Huber, L. J., et al. (2001) Impaired DNA damage response in cells expressing an exon 11-deleted murine Brca1 variant that localizes to nuclear foci. Mol. Cell. Biol. 21, 4005–4015.

    Article  PubMed  CAS  Google Scholar 

  32. Puget, N., et al. (1999) An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am. J. Hum. Genet. 64, 300–302.

    Article  PubMed  CAS  Google Scholar 

  33. Unger, M. A., et al. (2000) Screening for genomic rearrangements in families with breast and ovarian cancer identifies BRCA1 mutations previously missed by conformation-sensitive gel electrophoresis or sequencing. Am. J. Hum. Genet. 67, 841–850.

    Article  PubMed  CAS  Google Scholar 

  34. Payne, S. R., Newman, B., and King, M. C. (2000) Complex germline rearrangement of BRCA1 associated with breast and ovarian cancer. Genes Chromosomes Cancer 29, 58–62.

    Article  PubMed  CAS  Google Scholar 

  35. Welcsh, P. L. and King, M. C. (2001) BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 10, 705–713.

    Article  PubMed  CAS  Google Scholar 

  36. Orelli, B. J., Logsdon, J. M., Jr., and Bishop, D. K. (2001) Nine novel conserved motifs in BRCA1 identified by the chicken orthologue. Oncogene 20, 4433–4438.

    Article  PubMed  CAS  Google Scholar 

  37. Joukov, V., Chen, J., Fox, E. A., Green, J. B., and Livingston, D. M. (2001) Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc. Natl. Acad. Sci. USA 98, 12078–12083.

    Article  PubMed  CAS  Google Scholar 

  38. Wagner, T. M., et al. (1999) Global sequence diversity of BRCA2: analysis of 71 breast cancer families and 95 control individuals of worldwide populations. Hum. Mol. Genet. 8, 413–423.

    Article  PubMed  CAS  Google Scholar 

  39. Lorick, K. L., et al. (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96, 11364–11369.

    Article  PubMed  CAS  Google Scholar 

  40. Wu, L. C., et al. (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430–440.

    Article  PubMed  CAS  Google Scholar 

  41. Jin, Y., et al. (1997) Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc. Natl. Acad. Sci. USA 94, 12075–12080.

    Article  PubMed  CAS  Google Scholar 

  42. Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M. C., and Klevit, R. E. (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol. 8, 833–837.

    Article  PubMed  CAS  Google Scholar 

  43. Koonin, E. V., Altschul, S. F., and Bork, P. (1996) BRCA1 protein products⋯Functional motifs. Nat. Genet. 13, 266–268.

    Article  PubMed  CAS  Google Scholar 

  44. Bork, P., et al. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76.

    PubMed  CAS  Google Scholar 

  45. Callebaut, I. and Mornon, J. P. (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30.

    Article  PubMed  CAS  Google Scholar 

  46. Brzovic, P. S., Meza, J. E., King, M. C., and Klevit, R. E. (2001) BRCA1 RING domain cancer-predisposing mutations: structural consequences and effects on protein–protein interactions. J. Biol. Chem. 28, 28.

    Google Scholar 

  47. Williams, R. S., Green, R., and Glover, J. N. (2001) Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat. Struct. Biol. 8, 838–842.

    Article  PubMed  CAS  Google Scholar 

  48. Cortez, D., Wang, Y., Qin, J., and Elledge, S. J. (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  49. Tibbetts, R. S., et al. (2000) Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002.

    Article  PubMed  CAS  Google Scholar 

  50. Scully, R. and Livingston, D. M. (2000) In search of the tumor suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432.

    Article  PubMed  CAS  Google Scholar 

  51. Hakem, R., et al. (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  52. Ludwig, T., Chapman, D. L., Papaioannou, V. E., and Efstratiadis, A. (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226–1241.

    Article  PubMed  CAS  Google Scholar 

  53. Hakem, R., de la Pompa, J. l., Elia, A., Potter, J., and Mak, T. W. (1997) Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat. Genet. 16, 298–302.

    Article  PubMed  CAS  Google Scholar 

  54. Sharan, S. K., et al. (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810.

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki, A., et al. (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242–1252.

    Article  PubMed  CAS  Google Scholar 

  56. Scully, R., et al. (1996) Location of BRCA1 in human breast and ovarian cancer cells. Science 272, 123–126.

    Article  PubMed  CAS  Google Scholar 

  57. Scully, R., et al. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275.

    Article  PubMed  CAS  Google Scholar 

  58. Scully, R., et al. (1997) Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435.

    Article  PubMed  CAS  Google Scholar 

  59. Mizuta, R., et al. (1997) RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc. Natl. Acad. Sci. USA 94, 6927–6932.

    Article  PubMed  CAS  Google Scholar 

  60. Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V., and Bartel, P. L. (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941–31944.

    Article  PubMed  CAS  Google Scholar 

  61. Chen, P. L., et al. (1998) The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl. Acad. Sci. USA 95, 5287–5292.

    Article  PubMed  CAS  Google Scholar 

  62. Sarkisian, C. J., Master, S. R., Huber, L. J., Ha, S. I., and Chodosh, L. A. (2001) Analysis of murine brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals. J. Biol. Chem. 276, 37640–37648.

    Article  PubMed  CAS  Google Scholar 

  63. Chen, J., et al. (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328.

    Article  PubMed  CAS  Google Scholar 

  64. Rajan, J. V., Wang, M., Marquis, S. T., and Chodosh, L. A. (1996) Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc. Natl. Acad. Sci. USA 93, 13078–13083.

    Article  PubMed  CAS  Google Scholar 

  65. Rajan, J. V., Marquis, S. T., Gardner, H. P., and Chodosh, L. A. (1997) Developmental expression of Brca2 colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Dev. Biol. 184, 385–401.

    Article  PubMed  CAS  Google Scholar 

  66. Lim, D. S. and Hasty, P. (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell Biol. 16, 7133–7143.

    PubMed  CAS  Google Scholar 

  67. Baumann, P., Benson, F. E., and West, S. C. (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766.

    Article  PubMed  CAS  Google Scholar 

  68. Shinohara, A., Ogawa, H., and Ogawa, T. (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470.

    Article  PubMed  CAS  Google Scholar 

  69. West, S. C., Cassuto, E., and Howard-Flanders, P. (1981) Homologous pairing can occur before DNA strand separation in general genetic recombination. Nature 290, 29–33.

    Article  PubMed  CAS  Google Scholar 

  70. Sung, P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–1243.

    Article  PubMed  CAS  Google Scholar 

  71. Roeder, G. S. (1997) Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600–2621.

    Article  PubMed  CAS  Google Scholar 

  72. Zhong, Q., et al. (1999) Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285, 747–750.

    Article  PubMed  CAS  Google Scholar 

  73. Wu, X., et al. (2000) Independence of R/M/N focus formation and the presence of intact BRCA1. Science 289, 11a.

    Article  Google Scholar 

  74. Wang, Y., et al. (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939.

    PubMed  CAS  Google Scholar 

  75. Shen, S. X., et al. (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124.

    Article  PubMed  CAS  Google Scholar 

  76. Foray, N., et al. (1999) Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 18, 7334–7342.

    Article  PubMed  CAS  Google Scholar 

  77. Scully, R., et al. (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol. Cell 4, 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  78. Cantor, S. B., et al. (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160.

    Article  PubMed  CAS  Google Scholar 

  79. Kanaar, R., Hoeijmakers, J. H., and van Gent, D. C. (1998) Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 8, 483–489.

    Article  PubMed  CAS  Google Scholar 

  80. Paques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404.

    PubMed  CAS  Google Scholar 

  81. Karran, P. (2000) DNA double strand break repair in mammalian cells. Curr. Opin. Genet. Dev. 10, 144–150.

    Article  PubMed  CAS  Google Scholar 

  82. Moynahan, M. E., Chiu, J. W., Koller, B. H., and Jasin, M. (1999) Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518.

    Article  PubMed  CAS  Google Scholar 

  83. Moynahan, M. E., Pierce, A. J., and Jasin, M. (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272.

    Article  PubMed  CAS  Google Scholar 

  84. Moynahan, M. E., Cui, T. Y., and Jasin, M. (2001) Homology-directed dna repair, mito-mycinc resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61, 4842–4850.

    PubMed  CAS  Google Scholar 

  85. Tutt, A., et al. (2001) Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20, 4704–4716.

    Article  PubMed  CAS  Google Scholar 

  86. Xia, F., et al. (2001) Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl. Acad. Sci. USA 98, 8644–8649.

    Article  PubMed  CAS  Google Scholar 

  87. Patel, K. J., et al. (1998) Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357.

    Article  PubMed  CAS  Google Scholar 

  88. Mak, T. W., et al. (2000) Brcal required for T cell lineage development but not TCR loci rearrangement. Nat. Immunol. 1, 77–82.

    Article  PubMed  CAS  Google Scholar 

  89. Paull, T. T., Cortez, D., Bowers, B., Elledge, S. J., and Gellert, M. (2001) Direct DNA binding by Brca1. Proc. Natl. Acad. Sci. USA 98, 6086–6091.

    Article  PubMed  CAS  Google Scholar 

  90. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T., and Verma, I. M. (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl. Acad. Sci. USA 98, 5134–5139.

    Article  PubMed  CAS  Google Scholar 

  91. Garcia-Higuera, I., et al. (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262.

    Article  PubMed  CAS  Google Scholar 

  92. Marmorstein, L. Y., et al. (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104, 247–257.

    Article  PubMed  CAS  Google Scholar 

  93. Davies, A. A., et al. (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282.

    Article  PubMed  CAS  Google Scholar 

  94. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868.

    Article  PubMed  CAS  Google Scholar 

  95. Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916.

    Article  PubMed  CAS  Google Scholar 

  96. Paull, T. P., et al. (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895.

    Article  PubMed  CAS  Google Scholar 

  97. Fuks, F., Milner, J., and Kouzarides, T. (1998) BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene 17, 2531–2534.

    Article  PubMed  CAS  Google Scholar 

  98. Yarden, R. I. and Brody, L. C. (1999) BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl. Acad. Sci. USA 96, 4983–4988.

    Article  PubMed  CAS  Google Scholar 

  99. Bochar, D. A., et al. (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265.

    Article  PubMed  CAS  Google Scholar 

  100. Thomas, J. E., Smith, M., Tonkinson, J. L., Rubinfeld, B., and Polakis, P. (1997) Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ. 8, 801–809.

    PubMed  CAS  Google Scholar 

  101. Scully, R., Puget, N., and Vlasakova, K. (2000) DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene 19, 6176–6183.

    Article  PubMed  CAS  Google Scholar 

  102. Cox, M. M., et al. (2000) The importance of repairing stalled replication forks. Nature 404, 37–41.

    Article  PubMed  CAS  Google Scholar 

  103. Kowalczykowski, S. C. (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156–165.

    Article  PubMed  CAS  Google Scholar 

  104. Zhou, B.-B. S., and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439.

    Article  PubMed  CAS  Google Scholar 

  105. Cordeiro-Stone, M., Makhov, A. M., Zaritskaya, L. S., and Griffith, J. D. (1999) Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289, 1207–1218.

    Article  PubMed  CAS  Google Scholar 

  106. Brodie, S. G. and Deng, C. X. (2001) BRCA1-associated tumorigenesis: what have we learned from knockout mice? Trends Genet. 17, S18–S22.

    Article  PubMed  CAS  Google Scholar 

  107. Connor, F., et al. (1997) Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430.

    Article  PubMed  CAS  Google Scholar 

  108. Lee, H., et al. (1999) Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1–10.

    Article  PubMed  CAS  Google Scholar 

  109. Xu, X., et al. (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet. 22, 37–43.

    Article  PubMed  CAS  Google Scholar 

  110. Ludwig, T., Fisher, P., Ganesan, S., and Efstratiadis, A. (2001) Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes Dev. 15, 1188–1193.

    Article  PubMed  CAS  Google Scholar 

  111. Ludwig, T., Fisher, P., Murty, V., and Efstratiadis, A. (2001) Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20, 3937–3948.

    Article  PubMed  CAS  Google Scholar 

  112. Xu, X., et al. (2001) Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266–271.

    Article  PubMed  CAS  Google Scholar 

  113. Smith, P. D., et al. (1999) Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 18, 2451–2459.

    Article  PubMed  CAS  Google Scholar 

  114. Brodie, S. G., et al. (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514–7523.

    Article  PubMed  CAS  Google Scholar 

  115. Monteiro, A. N. (2000) BRCA1: exploring the links to transcription. Trends Biochem. Sci. 25, 469–474.

    Article  PubMed  CAS  Google Scholar 

  116. Parvin, J. D. (2001) BRCA1 at a branch point. Proc. Natl. Acad. Sci. USA 98, 5952–5954.

    Article  PubMed  CAS  Google Scholar 

  117. Irminger-Finger, I., Siegel, B. D., and Leung, W. C. (1999) The functions of breast cancer susceptibility gene 1 (BRCA1) product and its associated proteins. Biol. Chem. 380, 117–128.

    Article  PubMed  CAS  Google Scholar 

  118. Deng, C. X. and Brodie, S. G. (2000) Roles of BRCA1 and its interacting proteins. Bioessays 22, 728–737.

    Article  PubMed  CAS  Google Scholar 

  119. Somasundaram, K., et al. (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389, 187–190.

    Article  PubMed  CAS  Google Scholar 

  120. Wang, Q., Zhang, H., Kajino, K., and Greene, M. I. (1998) BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene 17, 1939–1948.

    Article  PubMed  CAS  Google Scholar 

  121. Fan, S., et al. (1999) BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 284, 1354–1356.

    Article  PubMed  CAS  Google Scholar 

  122. Scully, R., et al. (1997) BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 94, 5605–5610.

    Article  PubMed  CAS  Google Scholar 

  123. Yu, X., Wu, L. C., Bowcock, A. M., Aronheim, A., and Baer, R. (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25388–25392.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, H., et al. (1998) BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 16, 1713–1721.

    Article  PubMed  CAS  Google Scholar 

  125. Somasundaram, K., et al. (1999) BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene 18, 6605–6614.

    Article  PubMed  CAS  Google Scholar 

  126. Harkin, D. P., et al. (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97, 575–586.

    Article  PubMed  CAS  Google Scholar 

  127. MacLachlan, T. K., et al. (2000) BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275, 2777–2785.

    Article  PubMed  CAS  Google Scholar 

  128. Irminger-Finger, I., et al. (2001) Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol. Cell 8, 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  129. Marmorstein, L. Y., Ouchi, T., and Aaronson, S. A. (1998) The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl. Acad. Sci. USA 95, 13869–13874.

    Article  PubMed  CAS  Google Scholar 

  130. Zheng, L., et al. (2000) Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell 6, 757–768.

    Article  PubMed  CAS  Google Scholar 

  131. Tutt, A., et al. (1999) Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9, 1107–1110.

    Article  PubMed  CAS  Google Scholar 

  132. Xu, X., et al. (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395.

    Article  PubMed  CAS  Google Scholar 

  133. Hsu, L. C. and White, R. L. (1998) BRCA1 is associated with the centrosome during mitosis. Proc. Natl. Acad. Sci. USA 95, 12983–12988.

    Article  PubMed  CAS  Google Scholar 

  134. Deming, P. B., et al. (2001) The human decatenation checkpoint. Proc. Natl. Acad. Sci. USA 98, 12044–12049.

    Article  PubMed  CAS  Google Scholar 

  135. Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H., and Leadon, S. A. (1998) BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  136. Le Page, F., et al. (2000) BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells [In Process Citation]. Cancer Res. 60, 5548–5552.

    PubMed  Google Scholar 

  137. Kleiman, F. E. and Manley, J. L. (1999) Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285, 1576–1579.

    Article  PubMed  CAS  Google Scholar 

  138. Kleiman, F. E. and Manley, J. L. (2001) The BARD1-CstF-50 interaction links mRNA 3’ end formation to DNA damage and tumor suppression. Cell 104, 743–753.

    Article  PubMed  CAS  Google Scholar 

  139. Henikoff, S. (1997) Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr. Opin. Cell. Biol. 9, 388–395.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Scully, R., Puget, N. (2003). Hereditary Breast and Ovarian Cancer Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:041

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:041

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics