Skip to main content

Oligonucleotide Ligation Assay

  • Protocol
  • 1365 Accesses

Part of the Methods in Molecular Biology™ book series (MIMB,volume 212)

Abstract

The ability of DNA ligases to join nucleic acids is strongly influenced by mismatches in the ligation substrates (13). This mechanism has been exploited in a number of assays where the ability of oligonuleotide probes to be ligated reflects the genotype of the target molecules. This chapter will describe two protocols for solid-phase detection of reaction products in the oligonucleotide ligation assay (OLA), although there are several other detection schemes in use. However, the general considerations of ligase-based sequence distinction are the same, and they will be described in some detail.

Keywords

  • Ligation Reaction
  • Ligation Product
  • Enhancement Solution
  • Padlock Probe
  • Polymerase Chain Reaction Sample

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1385/1-59259-327-5:215
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-327-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 1.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) A ligasemediated gene detection technique. Science 241, 1077–1080.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Alves, A. M. and Carr, F. J. (1988) Dot blot detection of point mutations with adjacently hybridising synthetic oligonucleotide probes. Nucleic Acids Res. 16, 8723.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR): amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Grossman, P. D., Bloch, W., Brinson, E., Chang, C. C., Eggerding, F. A., Fung, S., et al. (1994) High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22, 4527–4534.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Gerry, N. P., Witowski, N. E., Day, J., Hammer, R. P., Barany, G., and Barany, F. (1999) Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292, 251–262.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Iannone, M. A., Taylor, J. D., Chen, J., Li, M. S., Rivers, P., SlentzKesler, K. A., and Weiner, M. P. (2000) Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39, 131–140.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Chen, X., Livak, K. J., and Kwok, P.-Y. (1998) A homogenous, ligase-mediated DNA diagnostic test for genome analysis. Genome Res. 8, 549–556.

    PubMed  CAS  Google Scholar 

  8. Nilsson, M., Malmgren, H., Samiotaki, M., Kwiatkowski, M., Chowdhary, B. P., and Landegren, U. (1994) Padlock probes: Circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Nilsson, M., Krejci, K., Koch, J., Kwiatkowski, M., Gustavsson, P., and Landegren, U. (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat. Genet. 16, 252–255.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C., and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19, 225–232.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Baner, J., Nilsson, M., Isaksson, A., Mendel-Hartvig, M., Antson, D. O., and Landegren, U. (2001) More keys to padlock probes: mechanisms for high-throughput nucleic acid analysis. Curr. Opin. Biotechnol. 12, 11–15.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Xu, Y. and Kool, E. T. (1999) High sequence fidelity in a non-enzymatic DNA autoligation reaction. Nucleic Acids Res. 27, 875–881.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Luo, J., Bergstrom, D. E., and Barany, F. (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Doherty, A. J. and Suh, S. W. (2000) Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res. 28, 4051–4058.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Subramanya, H. S., Doherty, A. J., Ashford, S. R., and Wigley, D. B. (1996) Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85, 607–615.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Hakansson, K., Doherty, A. J., Shuman, S., and Wigley, D. B. (1997) X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Sriskanda, V. and Shuman, S. (1998) Chlorella virus DNA ligase: nick recognition and mutational analysis. Nucleic Acids Res. 26, 525–531.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Sriskanda, V. and Shuman, S. (1998) Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Nucleic Acids Res. 26, 4618–4625.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Doherty, A. J. and Wigley, D. B. (1999) Functional domains of an ATP-dependent DNA ligase. J. Mol. Biol. 285, 63–71.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Doherty, A. J. and Dafforn, T. R. (2000) Nick recognition by DNA ligases. J. Mol. Biol. 296, 43–56.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Pritchard, C. E. and Southern, E. M. (1997) Effects of base mismatches on joining of short oligodeoxynucleotides by DNA ligases. Nucleic Acids Res. 25, 3403–3407.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Wu, D. Y. and Wallace, R. B. (1989) Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene 76, 245–254.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Nilsson, M., Barbany, G., Antson, D.-O., Gertow, K., and Landegren, U. (2000) Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat. Biotechnol. 18, 791–793.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Nilsson, M., Antson, D.-O., Barbany, G., and Landegren, U. (2001) RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res. 29, 578–581.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Weiss, B. and Richardson, C. C. (1967) Enzymatic breakage and joining of deoxyribonucleic acid. 3. An enzyme-adenylate intermediate in the polynucleotide ligase reaction. J. Biol. Chem. 242, 4270–4272.

    PubMed  CAS  Google Scholar 

  26. Engler, M. J. and Richardson, C. C. (1982) DNA Ligases, Academic Press Inc.

    Google Scholar 

  27. Takahashi, M., Yamaguchi, E., and Uchida, T. (1984) Thermophilic DNA ligase. Purification and properties of the enzyme from Thermus thermophilus HB8. J. Biol. Chem. 259, 10,041–10,047.

    PubMed  CAS  Google Scholar 

  28. Nilsson, M., Baner, J., Mendel-Hartvig, M., et al. (2002) Making ends meet in genetic analysis using padlock probes. Hum. Mutat. 19, 410–415.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Rossi, R., Montecucco, A., Ciarrocchi, G., and Biamonti, G. (1997) Functional characterization of the T4 DNA ligase: a new insight into the mechanism of action. Nucleic Acids Res. 25, 2106–2113.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Samiotaki, M., Kwiatkowski, M., Parik, J., and Landegren, U. (1994) Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics 20, 238–242.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Tobe, V. O., Taylor, S. L., and Nickerson, D. A. (1996) Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res. 24, 3728–3732.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Parik, J., Kwiatkowski, M., Lagerkvist, A., Lagerstrom Fermer, M., Samiotaki, M., Stewart, J., et al. (1993) A manifold support for molecular genetic reactions. Anal. Biochem. 211, 144–150.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Kwiatkowski, M., Samiotaki, M., Lamminmaki, U., Mukkala, V. M., and Landegren, U. (1994) Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucleic Acids Res. 22, 2604–2611.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Hemmila, I., Mukkala, V. M., Latva, M., and Kiilholma, P. (1993) Di-and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. J. Biochem. Biophys. Methods. 26, 283–290.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Nickerson, D. A., Kaiser, R., Lappin, S., Stewart, J., Hood, L., and Landegren, U. (1990) Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87, 8923–8927.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Jarvius, J., Nilsson, M., Landegren, U. (2003). Oligonucleotide Ligation Assay. In: Kwok, PY. (eds) Single Nucleotide Polymorphisms. Methods in Molecular Biology™, vol 212. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-327-5:215

Download citation

  • DOI: https://doi.org/10.1385/1-59259-327-5:215

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-968-1

  • Online ISBN: 978-1-59259-327-9

  • eBook Packages: Springer Protocols