Skip to main content

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 71))

  • 751 Accesses

Abstract

Classical transposons applicable to Haemophilus influenzae have had their limitations. Recently, however, advances have been made in the development of transposon systems and their applications, such as signature tagged mutagenesis, to identify in-vivo survival genes, and the GAMBIT strategy, to identify in-vitro essential genes. Over the last two decades, transposon mutagenesis has been developed mainly for Escherichia coli. During that time, several transposable gene fusion vector and phage systems were constructed, which targeted different aspects of gene expression, protein subcellular localization, and membrane protein topology (1). For example, operon and gene fusion systems were established to study transcriptional/translational regulation of target genes. These systems consist of “reporter” genes, such as lacZ, blaM, phoA, gfp, luxA, or cat, lacking either their own transcriptional or translational signals. The reporters are embedded within transposons in such a way that they form transcriptional or translational hybrids with the target gene. For example, systems such as TnphoA (2) or Tnbla (3) carry the phoA or blaM reporter genes, encoding alkaline phosphatase or TEM1 β-lactamase, respectively, but lacking signal sequences. Both reporter genes express activity only after an insertion occurs in the reading frame of an expressed gene encoding for an exported or membrane associated protein. A potential advantage of the blaM reporter is that gene fusion events can be selected directly after transposition by demanding various levels of resistance to ampicillin or other β-lactam antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Slauch J. M. and Silhavy T. J. (1991) Genetic fusion as experimental tools. Meth. Enzymol. 204, 13–48.

    Google Scholar 

  2. Manoil C. and Beckwith J. (1985) TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82, 8129–8133.

    Article  CAS  PubMed  Google Scholar 

  3. Tadayyon M. and Broome-Smith J. K. (1993) TnblaM: a transposon for directly tagging bacterial genes encoding cell envelope and secreted proteins. Gene 111, 21–26.

    Article  Google Scholar 

  4. Way J. C., Davis M. A., Morisato D., Roberts D. E., and Kleckner N. (1984) New Tn10 derivates for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32, 369–379.

    Article  CAS  PubMed  Google Scholar 

  5. Elliott T. and Roth J. R. (1988) Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol. Gen. Genet. 213, 332–338.

    Article  CAS  PubMed  Google Scholar 

  6. Reidl J. and Mekalanos J. J. (1995) Characterization of Vibrio cholerae bacteriophage K139 and use of a novel mini transposon to identify a phage-encoded virulence factor. Mol. Microbiol. 18, 685–701.

    Article  CAS  PubMed  Google Scholar 

  7. Kraiβ A., Schlör S., and Reidl J. (1998) In vivo transposon mutagenesis in Haemophilus influenzae. Appl. Environ. Microbiol. 64, 4697–4702.

    Google Scholar 

  8. Kleckner N., Bender J., and Gottesman S. (1991) Uses of transposons with emphasis on Meth. Enzymol. 204, 139–180.

    Article  CAS  Google Scholar 

  9. Reidl J. and Mekalanos J. J. (1996) Lipoprotein e(P4) is essential for hemin uptake by Haemophilus influenzae. J. Exp. Med. 183, 621–629.

    Article  CAS  PubMed  Google Scholar 

  10. Reidl J., Schlör S., Kraiβ A., et al. (2000) NADP and NAD utilization in Haemophilus influenzae. Mol. Microbiol, 35, 1573–1587.

    Article  CAS  PubMed  Google Scholar 

  11. Barcak G. J., Chandler M. S., Redfield R. J., and Tomb J. F. (1991) Genetic systems in Haemophilus influenzae. Meth. Enzymol. 204, 321–342.

    Article  CAS  PubMed  Google Scholar 

  12. Redfield R. J. (1991) sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J. Bacteriol. 173, 5612–5618.

    CAS  PubMed  Google Scholar 

  13. Smith H. O., Tomb J. F., Dougherty B. A., Fleischmann R. D., and Venter J. G. (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269, 538–540.

    Article  CAS  PubMed  Google Scholar 

  14. Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  CAS  PubMed  Google Scholar 

  15. Grimberg J., Maguire S., and Belluscio L. (1989) A simple method for the preparation of plasmid and chromosomal E. coli DNA. Nucleic Acids Res. 21, 88–93.

    Google Scholar 

  16. Dziejman M. and Mekalanos J. J. (1994) Analysis of membrane protein interaction: ToxR can dimerize the amino terminus of phage lambda repressor. Mol. Microbiol. 13, 485–494.

    Article  CAS  PubMed  Google Scholar 

  17. Rose R. E. (1988) The nucleotide sequence of pACYC177. Nucleic Acids Res. 16, 356.

    Article  CAS  PubMed  Google Scholar 

  18. Rose R. E. (1988) The nucleotide sequence of pACYC184. Nucleic Acids Res. 16, 355.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Schlör, S., Kemmer, G., Reidl, J. (2003). Transposon Tn 10 . In: Herbert, M.A., Hood, D.W., Moxon, E.R. (eds) Haemophilus influenzae Protocols. Methods in Molecular Medicine™, vol 71. Humana Press. https://doi.org/10.1385/1-59259-321-6:211

Download citation

  • DOI: https://doi.org/10.1385/1-59259-321-6:211

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-928-5

  • Online ISBN: 978-1-59259-321-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics