Skip to main content

Use of the Herpes Simplex Viral Genome to Construct Gene Therapy Vectors

  • Protocol
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 76))

  • 862 Accesses

Abstract

Herpes simplex virus (HSV) is an enveloped double-stranded DNA virus (see Fig. 1A-reviewed in ref. 1). The mature virion consists of the following components:

A. Schematic depiction of a mature HSV virion illustrating the main components of the virus particle. B. The HSV genome is organized into unique long and short segments (UL, US) flanked by repeated sequences. The 84 viral open reading frames can be divided into genes that are essential for replication in a permissive tissue culture environment, and those that are dispensable. The functions of the nonessential gene products are related to viral interactions with the host in vivo.

  1. 1.

    A trilaminar lipid envelope, in which are embedded 10 viral glycoproteins-these are responsible for several functions including receptor-mediated cellular entry (2ā€“5).

  2. 2.

    A matrix of proteins, the tegument, which form a layer between the envelope and the underlying capsid. Functions of the tegument proteins include: induction of viral gene expression (6ā€“8); shutoff of host protein synthesis immediately following infection (9ā€“12); virion assembly functions.

  3. 3.

    An icosadeltahedral capsid, typical of the herpesvirus family (13,14).

  4. 4.

    A core of toroidal double-stranded DNA (dsDNA) (14ā€“16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roizman, B. and Sears, A. E. (1996) Herpes Simplex Viruses and Their Replica-tion, in Fields Virology (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven, Philadelphia, PA.

    Google ScholarĀ 

  2. Rajcani, J. and Vojvodova, A. (1998) The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol. 42, 103ā€“118.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Spear, P. (1993) Membrane fusion induced by herpes simplex virus, in Viral Fusion Mechanisms (Bentz, J., ed.), CRC, Boca Raton, FL.

    Google ScholarĀ 

  4. Spear, P. G. (1993) Entry of alphaherpesviruses into cells. Semin. Virol. 4, 167ā€“180.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Stevens, A. C. and Spear, P. G. (1997) Herpesvirus capsid assembly and envelopment, in Structural Biology of Viruses (Chiu, W., Burnett, R., and Garcea, R., eds.), Oxford University Press, New York.

    Google ScholarĀ 

  6. Mackem, S. and Roizman, B. (1982) Structural features of the herpes simplex virus alpha gene 4, 0, and 27 promoter-regulatory sequences which confer alpha regulation on chimeric thymidine kinase genes. J. Virol. 44, 939ā€“949.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Batterson, W. and Roizman, B. (1983) Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J. Virol. 46, 371ā€“377.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Campbell, M. E., Palfreyman, J. W., and Preston, C. M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol. 180, 1ā€“19.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Read, G. S. and Frenkel, N. (1983) Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. J. Virol. 46, 498ā€“512.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Kwong, A. D. and Frenkel, N. (1989) The herpes simplex virus virion host shutoff function. J. Virol. 63, 4834ā€“4839.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Kwong, A. D., Kruper, J. A., and Frenkel, N. (1988) Herpes simplex virus virion host shutoff function. J. Virol. 62, 912ā€“921.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Kwong, A. D. and Frenkel, N. (1987) Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc. Natl. Acad. Sci. USA 84, 1926ā€“1930.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Newcomb, W. W., Homa, F. L., Thomsen, D. R., Trus, B. L., Cheng, N., Steven, A., et al. (1999) Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol. 73, 4239ā€“4250.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Homa, F. L. and Brown, J. C. (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev. Med. Virol. 7, 107ā€“122.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Furlong, D., Swift, H., and Roizman, B. (1972) Arrangement of herpesvirus deoxyribonucleic acid in the core. J. Virol. 10, 1071ā€“1074.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Puvion Dutilleul, F., Pichard, E., and Leduc, E. H. (1985) Influence of embedding media on DNA structure in herpes simplex virus type 1. Biol. Cell 54, 195ā€“198.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Perry, L. J. and McGeoch, D. J. (1988) The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 2831ā€“2846.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., et al. (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 1531ā€“1574.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. McGeoch, D. J., Dolan, A., Donald, S., and Brauer, D. H. (1986) Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res. 14, 1727ā€“1745.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. McGeoch, D. J., Dolan, A., Donald, S., and Rixon, F. J. (1985) Sequence determi-nation and genetic content of the short unique region in the genome of herpes simplex virus type 1. J. Mol. Biol. 181, 1ā€“13.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Krisky, D. M., Wolfe, D., Goins, W. F., Marconi, P. C., Ramakrishnan, R., Mata, M., et al. (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 5, 1593ā€“1603.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Krisky, D. M., Marconi, P. C., Oligino, T. J., Rouse, R. J., Fink, D. J., Cohen, J. B., et al. (1998) Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5, 1517ā€“1530.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L., and Coen, D. M. (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854ā€“856.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. MacLean, A. R., ul Fareed, M., Robertson, L., Harland, J., and Brown, S. M. (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+between immediate early gene 1 and theā€™ aā€™ sequence. J. Gen. Virol. 72, 631ā€“639.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Whitley, R. J., Kern, E. R., Chatterjee, S., Chou, J., and Roizman, B. (1993) Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J. Clin. Invest. 91, 2837ā€“2843.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D., and Martuza, R. L. (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat. Med. 1, 938ā€“943.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Chambers, R., Gillespie, G. Y., Soroceanu, L., Andreansky, S., Chatterjee, S., Chou, J., et al. (1995) Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc. Natl. Acad. Sci. USA 92, 1411ā€“1415.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Honess, R. W. and Roizman, B. (1975) Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl. Acad. Sci. USA 72, 1276ā€“1280.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Honess, R. W. and Roizman, B. (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol. 14, 8ā€“19.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Holland, L. E., Anderson, K. P., Shipman, C., and Wagner, E. K. (1980) Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology 101, 10ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Mavromara Nazos, P. and Roizman, B. (1987) Activation of herpes simplex virus 1 gamma 2 genes by viral DNA replication. Virology 161, 593ā€“598.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. DeLuca, N. A., McCarthy, A. M., and Schaffer, P. A. (1985) Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol. 56, 558ā€“570.

    PubMedĀ  CASĀ  Google ScholarĀ 

  33. Sacks, W. R., Greene, C. C., Aschman, D. P., and Schaffer, P. A. (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J. Virol. 55, 796ā€“805.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. McCarthy, A. M., McMahan, L., and Schaffer, P. A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J. Virol. 63, 18ā€“27.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Cook, M. L. and Stevens, J. G. (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect. Immun. 7, 272ā€“288.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S., and LaVail, J. H. (2000) Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl. Acad. Sci. USA 97, 8146ā€“8150.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Bak, I. J., Markham, C. H., Cook, M. L., and Stevens, J. G. (1977) Intraaxonal transport of Herpes simplex virus in the rat central nervous system. Brain Res. 136, 415ā€“429.

    Google ScholarĀ 

  38. Mellerick, D. M. and Fraser, N. W. (1987) Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158, 265ā€“275.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Deshmane, S. L. and Fraser, N. W. (1989) During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J. Virol. 63, 943ā€“947.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Dressler, G. R., Rock, D. L., and Fraser, N. W. (1987) Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J. Gen. Virol. 68, 1761ā€“1765.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Stevens, J. G., Wagner, E. K., Devi Rao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056ā€“1059.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Croen, K. D., Ostrove, J. M., Dragovic, L. J., Smialek, J. E., and Straus, S. E. (1987) Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene ā€œanti-senseā€ transcript by in situ hybridization. N. Engl. J. Med. 317, 1427ā€“1432.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Spivack, J. G. and Fraser, N. W. (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice [published erratum appears in J. Virol. 1988 Feb;62(2):663]. J. Virol. 61, 3841ā€“3847.

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Rock, D. L., Nesburn, A. B., Ghiasi, H., Ong, J., Lewis, T. L., Lokensgard, J. R., and Wechsler, S. L. (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J. Virol. 61, 3820ā€“3826.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Gordon, Y. J., Johnson, B., Romanowski, E., and Araullo Cruz, T. (1988) RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia. J. Virol. 62, 1832ā€“1835.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Miranda Saksena, M., Armati, P., Boadle, R. A., Holland, D. J., and Cunningham, A. L. (2000) Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J. Virol. 74, 1827ā€“1839.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Rivera, L., Beuerman, R. W., and Hill, J. M. (1988) Corneal nerves contain intra-axonal HSV-1 after virus reactivation by epinephrine iontophoresis. Curr. Eye Res. 7, 1001ā€“1008.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Farrell, M. J., Dobson, A. T., and Feldman, L. T. (1991) Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl. Acad. Sci. USA 88, 790ā€“794.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Krummenacher, C., Zabolotny, J. M., and Fraser, N. W. (1997) Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J. Virol. 71, 5849ā€“5860.

    PubMedĀ  CASĀ  Google ScholarĀ 

  50. Wu, T. T., Su, Y. H., Block, T. M., and Taylor, J. M. (1996) Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J. Virol. 70, 5962ā€“5967.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Alvira, M. R., Goins, W. F., Cohen, J. B., and Glorioso, J. C. (1999) Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection. J. Virol. 73, 3866ā€“3876.

    PubMedĀ  CASĀ  Google ScholarĀ 

  52. Rodahl, E. and Haarr, L. (1997) Analysis of the 2-kilobase latency-associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1: evidence for a stable, nonlinear structure. J. Virol. 71, 1703ā€“1707.

    PubMedĀ  CASĀ  Google ScholarĀ 

  53. Goldenberg, D., Mador, N., Ball, M. J., Panet, A., and Steiner, I. (1997) The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. J. Virol. 71, 2897ā€“2904.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Thompson, R. L. and Sawtell, N. M. (1997) The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J. Virol. 71, 5432ā€“5440.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Perng, G. C., Slanina, S. M., Yukht, A., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (2000) The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J. Virol. 74, 1885ā€“1891.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Block, T. M., Deshmane, S., Masonis, J., Maggioncalda, J., Valyi Nagi, T., and Fraser, N. W. (1993) An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 192, 618ā€“630.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Drolet, B. S., Perng, G. C., Villosis, R. J., Slanina, S. M., Nesburn, A. B., and Wechsler, S. L. (1999) Expression of the first 811 nucleotides of the herpes simplex virus type 1 latency-associated transcript (LAT) partially restores wild-type spontaneous reactivation to a LAT-null mutant. Virology 253, 96ā€“106.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Loutsch, J. M., Perng, G. C., Hill, J. M., Zheng, X., Marquart, M. E., Block, T. M., et al. (1999) Identical 371-base-pair deletion mutations in the LAT genes of herpes simplex virus type 1 McKrae and 17syn+result in different in vivo reactivation phenotypes. J. Virol. 73, 767ā€“771.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Perng, G. C., Dunkel, E. C., Geary, P. A., Slanina, S. M., Ghiasi, H., Kaiwar, R., et al. (1994) The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J. Virol. 68, 8045ā€“8055.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Perng, G. C., Slanina, S. M., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1996) A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J. Virol. 70, 2014ā€“2018.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Perng, G. C., Ghiasi, H., Slanina, S. M., Nesburn, A. B., and Wechsler, S. L. (1996) The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J. Virol. 70, 976ā€“984.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Perng, G. C., Slanina, S. M., Yukht, A., Drolet, B. S., Keleher, W., Jr., Ghiasi, H., et al. (1999) A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. J. Virol. 73, 920ā€“929.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Mador, N., Goldenberg, D., Cohen, O., Panet, A., and Steiner, I. (1998) Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J. Virol. 72, 5067ā€“5075.

    PubMedĀ  CASĀ  Google ScholarĀ 

  64. Garber, D. A., Schaffer, P. A., and Knipe, D. M. (1997) A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J. Virol. 71, 5885ā€“5893.

    PubMedĀ  CASĀ  Google ScholarĀ 

  65. Chen, S. H., Kramer, M. F., Schaffer, P. A., and Coen, D. M. (1997) A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 71, 5878ā€“5884.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Perng, G. C., Jones, C., Ciacci Zanella, J., Stone, M., Henderson, G., Yukht, A., et al. (2000) Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287, 1500ā€“1503.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Thomas, S. K., Gough, G., Latchman, D. S., and Coffin, R. S. (1999) Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. J. Virol. 73, 6618ā€“6625.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Hui, E. K. and Lo, S. J. (1998) Does the latency associated transcript (LAT) of herpes simplex virus (HSV) function as a ribozyme during viral reactivation? Virus Genes 16, 147ā€“148.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Javier, R. T., Stevens, J. G., Dissette, V. B., and Wagner, E. K. (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166, 254ā€“257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Sedarati, F., Izumi, K. M., Wagner, E. K., and Stevens, J. G. (1989) Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J. Virol. 63, 4455ā€“4458.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Steiner, I., Spivack, J. G., Lirette, R. P., Brown, S. M., MacLean, A. R., Subak Sharpe, J. H., and Fraser, N. W. (1989) Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. Embo J. 8, 505ā€“511.

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. Ho, D. Y. and Mocarski, E. S. (1989) Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl. Acad. Sci. USA 86, 7596ā€“7600.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Goins, W. F., Sternberg, L. R., Croen, K. D., Krause, P. R., Hendricks, R. L., Fink, D. J., et al. (1994) A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J. Virol. 68, 2239ā€“2252.

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Soares, K., Hwang, D. Y., Ramakrishnan, R., Schmidt, M. C., Fink, D. J., and Glorioso, J. C. (1996) cis-acting elements involved in transcriptional regulation of the herpes simplex virus type 1 latency-associated promoter 1 (LAP1) in vitro and in vivo. J. Virol. 70, 5384ā€“5394.

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Dobson, A. T., Sederati, F., Devi Rao, G., Flanagan, W. M., Farrell, M. J., Stevens, J. G., et al. (1989) Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol. 63, 3844ā€“3851.

    PubMedĀ  CASĀ  Google ScholarĀ 

  76. Zwaagstra, J., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1989) In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1. J. Gen. Virol. 70, 2163ā€“2169.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Zwaagstra, J. C., Ghiasi, H., Nesburn, A. B., and Wechsler, S. L. (1991) Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology 182, 287ā€“297.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Leib, D. A., Nadeau, K. C., Rundle, S. A., and Schaffer, P. A. (1991) The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc. Natl. Acad. Sci. USA 88, 48ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Zwaagstra, J. C., Ghiasi, H., Slanina, S. M., Nesburn, A. B., Wheatley, S. C., Lillycrop, K., et al. (1990) Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J. Virol. 64, 5019ā€“5028.

    PubMedĀ  CASĀ  Google ScholarĀ 

  80. Chen, X., Schmidt, M. C., Goins, W. F., and Glorioso, J. C. (1995) Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J. Virol. 69, 7899ā€“7908.

    PubMedĀ  CASĀ  Google ScholarĀ 

  81. Nicosia, M., Deshmane, S. L., Zabolotny, J. M., Valyi Nagy, T., and Fraser, N. W. (1993) Herpes simplex virus type 1 latency-associated transcript (LAT) promoter deletion mutants can express a 2-kilobase transcript mapping to the LAT region. J. Virol. 67, 7276ā€“7283.

    PubMedĀ  CASĀ  Google ScholarĀ 

  82. French, S. W., Schmidt, M. C., and Glorioso, J. C. (1996) Involvement of a highmobility-group protein in the transcriptional activity of herpes simplex virus latency-active promoter 2. Mol. Cell. Biol. 16, 5393ā€“5399.

    PubMedĀ  CASĀ  Google ScholarĀ 

  83. Palmer, J. A., Branston, R. H., Lilley, C. E., Robinson, M. J., Groutsi, F., Smith, J., etal. (2000) Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J. Virol. 74, 5604ā€“5618.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Lachmann, R. H. and Efstathiou, S. (1997) Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J. Virol. 71, 3197ā€“3207.

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Wolfe, J. H., Deshmane, S. L., and Fraser, N. W. (1992) Herpesvirus vector gene transfer and expression of beta-glucuronidase in the central nervous system of MPS VII mice. Nat. Genet. 1, 379ā€“384.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Goins, W. F., Lee, K. A., Cavalcoli, J. D., Oā€™Malley, M. E., DeKosky, S. T., Fink, D. J., and Glorioso, J. C. (1999) Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J. Virol. 73, 519ā€“532.

    PubMedĀ  CASĀ  Google ScholarĀ 

  87. Wolfe, D., Goins, W. F., Kaplan, T. J., Capuano, S. V., Fradette, J., Murphey-Corb, M., et al. (2001) Herpesvirus-mediated systemic delivery of nerve growth factor. Mol. Ther. 3, 61ā€“69.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Montgomery, R. I., Warner, M. S., Lum, B. J., and Spear, P. G. (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427ā€“436.

    Google ScholarĀ 

  89. Whitbeck, J. C., Connolly, S. A., Willis, S. H., Hou, W., Krummenacher, C., Ponce De Leon, M., et al. (2001) Localization of the gD-binding region of the human herpes simplex virus receptor, hveA. J. Virol. 75, 171ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J., and Spear, P. G. (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280, 1618ā€“1620.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Krummenacher, C., Baribaud, I., Ponce De Leon, M., Whitbeck, J. C., Lou, H., Cohen, G. H., and Eisenberg, R. J. (2000) Localization of a binding site for herpes simplex virus glycoprotein D on herpesvirus entry mediator C by using antireceptor monoclonal antibodies. J. Virol. 74, 10,863ā€“10,872.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Krummenacher, C., Nicola, A. V., Whitbeck, J. C., Lou, H., Hou, W., Lambris, J. D., et al. (1998) Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J. Virol. 72, 7064ā€“7074.

    PubMedĀ  CASĀ  Google ScholarĀ 

  93. Shukla, D., Dal Canto, M. C., Rowe, C. L., and Spear, P. G. (2000) Striking similarity of murine nectin-1 alpha to human nectin-1 alpha (HveC) in sequence and activity as a glycoprotein D receptor for alphaherpesvirus entry. J. Virol. 74, 11,773ā€“11,781.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Moriuchi, S., Krisky, D. M., Marconi, P. C., Tamura, M., Shimizu, K., Yoshimine, T., et al. (2000) HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther. 7, 1483ā€“1490.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Akkaraju, G. R., Huard, J., Hoffman, E. P., Goins, W. F., Pruchnic, R., Watkins, S. C., et al. (1999) Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. J. Gene Med. 1, 280ā€“289.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Wolfe, D., Goins, W. F., Yamada, M., Moriuchi, S., Krisky, D. M., Oligino, T. J., et al. (1999) Engineering herpes simplex virus vectors for CNS applications. Exp. Neurol. 159, 34ā€“46.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Marshall, K. R., Lachmann, R. H., Efstathiou, S., Rinaldi, A., and Preston, C. M. (2000) Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J. Virol. 74, 956ā€“964.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Smith, C., Lachmann, R. H., and Efstathiou, S. (2000) Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J. Gen. Virol. 3, 649ā€“662.

    Google ScholarĀ 

  99. Boviatsis, E. J., Scharf, J. M., Chase, M., Harrington, K., Kowall, N. W., Breakefield, X. O., and Chiocca, E. A. (1994) Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther. 1, 323ā€“331.

    PubMedĀ  CASĀ  Google ScholarĀ 

  100. Markert, J.M., Malick, A., Coen, D. M., and Martuza, R. L. (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32, 597ā€“603.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Andreansky, S., Soroceanu, L., Flotte, E. R., Chou, J., Markert, J. M., Gillespie, G. Y., et al. (1997) Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res. 57, 1502ā€“1509.

    PubMedĀ  CASĀ  Google ScholarĀ 

  102. Rampling, R., Cruickshank, G., Papanastassiou, V., Nicoll, J., Hadley, D., Bren-nan, D., et al. (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma [see comments]. Gene Ther. 7, 859ā€“866.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  103. Markert, J. M., Medlock, M. D., Rabkin, S. D., Gillespie, G. Y., Todo, T., Hunter, W. D., et al. (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial [see comments]. Gene Ther. 7, 867ā€“874.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Wu, N., Watkins, S. C., Schaffer, P. A., and DeLuca, N. A. (1996) Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70, 6358ā€“6569.

    PubMedĀ  CASĀ  Google ScholarĀ 

  105. Samaniego, L. A., Webb, A. L., and DeLuca, N. A. (1995) Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69, 5705ā€“5715.

    PubMedĀ  CASĀ  Google ScholarĀ 

  106. Samaniego, L. A., Wu, N., and DeLuca, N. A. (1997) The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J. Virol. 71, 4614ā€“4625.

    PubMedĀ  CASĀ  Google ScholarĀ 

  107. Samaniego, L. A., Neiderhiser, L., and DeLuca, N. A. (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72, 3307ā€“3320.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Marconi, P., Krisky, D., Oligino, T., Poliani, P. L., Ramakrishnan, R., Goins, W. F., et al. (1996) Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl. Acad. Sci. USA 93, 11,319ā€“11,320.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Ramakrishnan, R., Levine, M., and Fink, D. J. (1994) PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. J. Virol. 68, 7083ā€“7091.

    PubMedĀ  CASĀ  Google ScholarĀ 

  110. Ramakrishnan, R., Fink, D. J., Jiang, G., Desai, P., Glorioso, J. C., and Levine, M. (1994) Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain. J. Virol. 68, 1864ā€“1873.

    PubMedĀ  CASĀ  Google ScholarĀ 

  111. Ramakrishnan, R., Poliani, P. L., Levine, M., Glorioso, J. C., and Fink, D. J. (1996) Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J. Virol. 70, 6519ā€“6523.

    PubMedĀ  CASĀ  Google ScholarĀ 

  112. Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295ā€“304.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Freese, A. and Geller, A. (1991) Infection of cultured striatal neurons with a defective HSV-1 vector: implications for gene therapy. Nucleic Acids Res. 19, 7219ā€“7223.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Geller, A. I. and Breakefield, X. O. (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241, 1667ā€“1669.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., et al. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70, 7190ā€“7197.

    PubMedĀ  CASĀ  Google ScholarĀ 

  116. Suter, M., Lew, A. M., Grob, P., Adema, G. J., Ackermann, M., Shortman, K., and Fraefel, C. (1999) BAC-VAC, a novel generation of (DNA) vaccines: A bacterial artificial chromosome (BAC) containing a replication-competent, packaging-defective virus genome induces protective immunity against herpes simplex virus 1. Proc. Natl. Acad. Sci. USA 96, 12,697ā€“12,702.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. Stavropoulos, T. A. and Strathdee, C. A. (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J. Virol. 72, 7137ā€“7143.

    PubMedĀ  CASĀ  Google ScholarĀ 

  118. Horsburgh, B. C., Hubinette, M. M., Qiang, D., MacDonald, M. L., and Tufaro, E (1999) Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther. 6, 922ā€“930.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  119. Johnson, P. A., Wang, M. J., and Friedmann, T. (1994) Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. J. Virol. 68, 6347ā€“6362.

    PubMedĀ  CASĀ  Google ScholarĀ 

  120. Johnson, P. A., Yoshida, K., Gage, E H., and Friedmann, T. (1992) Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Brain Res. Mol. Brain Res. 12, 95ā€“102.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  121. Chen, J. and Silverstein, S. (1992) Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J. Virol. 66, 2916ā€“2927.

    PubMedĀ  CASĀ  Google ScholarĀ 

  122. Cai, W. and Schaffer, P. A. (1992) Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J. Virol. 66, 2904ā€“2915.

    PubMedĀ  CASĀ  Google ScholarĀ 

  123. Sacks, W. R. and Schaffer, P. A. (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J. Virol. 61, 829ā€“839.

    PubMedĀ  CASĀ  Google ScholarĀ 

  124. Stow, N. D. and Stow, E. C. (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw 110. J. Gen. Virol. 67, 2571ā€“2585.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  125. Jordan, R. and Schaffer, P. A. (1997) Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis. J. Virol. 71, 6850ā€“6862.

    PubMedĀ  CASĀ  Google ScholarĀ 

  126. Chen, X., Li, J., Mata, M., Goss, J., Wolfe, D., Glorioso, J. C., and Fink, D. J. (2000) Herpes simplex virus type 1 ICP0 protein does not accumulate in the nucleus of primary neurons in culture. J. Virol. 74, 10,132ā€“10,141.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  127. Fruh, K., Ahn, K., Djaballah, H., Sempe, P., van Endert, P. M., Tampe, R., et al. (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415ā€“418.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  128. Hill, A., Jugovic, P., York, I., Russ, G., Bennink, J., Yewdell, J., et al. (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411ā€“415.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  129. York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+T lymphocytes. Cell 77, 525ā€“535.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  130. Krisky, D. M., Marconi, P. C., Oligino, T., Rouse, R. J., Fink, D. J., and Glorioso, J. C. (1997) Rapid method for construction of recombinant HSV gene transfer vectors. Gene Ther. 4, 1120ā€“1125.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  131. Brown, T. (1999) Analysis of DNA Sequences by Blotting and Hybridization, in Current Protocols in Molecular Biology, 2nd edition, vol. 1. (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. eds.), John Wiley and Sons, Inc., New York, NY.

    Google ScholarĀ 

  132. Wilson, S. P., Yeomans, D. C., Bender, M. A., Lu, Y., Goins, W. F., and Glorioso, J. C. (1999) Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc. Natl. Acad. Sci. USA 96, 3211ā€“3216.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  133. Yamada, M., Oligino, T., Mata, M., Goss, J. R., Glorioso, J. C., and Fink, D. J. (1999) Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc. Natl. Acad. Sci. USA 96, 4078ā€“4083.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  134. Evans, C., Goins, W. F., Schmidt, M. C., Robbins, P. D., Ghivizzani, S. C., Oligino, T., et al. (1997) Progress in development of herpes simplex virus gene vectors for treatment of rheumatoid arthritis. Adv. Drug Deliv. Rev. 27, 41ā€“57.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  135. Oligino, T., Ghivizzani, S., Wolfe, D., Lechman, E., Krisky, D., Mi, Z., et al. (1999) Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Ther. 6, 1713ā€“1720.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  136. Marconi, P., Tamura, M., Moriuchi, S., Krisky, D. M., Niranjan, A., Goins, W. F., et al. (2000) Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol. Ther. 1, 71ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  137. Moriuchi, S., Oligino, T., Krisky, D., Marconi, P., Fink, D., Cohen, J., and Glorioso, J. C. (1998) Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Res. 58, 5731ā€“5737.

    PubMedĀ  CASĀ  Google ScholarĀ 

  138. Niranjan, A., Moriuchi, S., Lunsford, L. D., Kondziolka, D., Flickinger, J. C., Fellows, W., et al. (2000) Effective treatment of experimental glioblastoma by HSV vector-mediated TNFalpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration. Mol. Ther. 2, 114ā€“120.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  139. Gomez Navarro, J., Contreras, J. L., Arafat, W., Jiang, X. L., Krisky, D., Oligino, T., et al. (2000) Genetically modified CD34+cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther. 7, 43ā€“52.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  140. Laquerre, S., Anderson, D. B., Stolz, D. B., and Glorioso, J. C. (1998) Recombi-nant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol. 72, 9683ā€“9697.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Burton, E.A., Huang, S., Goins, W.F., Glorioso, J.C. (2003). Use of the Herpes Simplex Viral Genome to Construct Gene Therapy Vectors. In: Machida, C.A. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Medicineā„¢, vol 76. Humana Press. https://doi.org/10.1385/1-59259-304-6:01

Download citation

  • DOI: https://doi.org/10.1385/1-59259-304-6:01

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-019-9

  • Online ISBN: 978-1-59259-304-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics