Spectral Karyotyping

  • Jane Bayani
  • Jeremy A. Squire
Part of the Methods in Molecular Biology™ book series (MIMB, volume 204)


Historically in clinical cytogenetics, G-banding has been the gold standard for detecting gross chromosomal abnormalities, ranging from simple numerical changes to the identification of complex structural rearrangements in clinical samples. The designation “marker chromosome” or “derivative chromosome” has been used to indicate that G-banding has been unable to provide a definitive identification of the aberration. This is often because the complexity of the rearrangement has resulted in the lack of a coherent and recognizable banding pattern. The advent of the various multicolor fluorescence in situ hybridization (FISH) chromosomal painting techniques (1,1) has greatly improved our ability to identify all marker chromosomes, but these techniques still need some careful planning in rapidly achieving the goal of identifying complex chromosomal rearrangements.


Denaturation Time Sagnac Interferometer Formamide Solution Apply Spectral Image Cytogenetic Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Speicher M. R., Gwyn Ballard S., and Ward D. C. (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375.CrossRefPubMedGoogle Scholar
  2. 2.
    Schrock E., du Manoir S., Veldman T., et al. (1996) Multicolor spectral karyotyping of human chromosomes [see comments]. Science 273, 494–497.CrossRefPubMedGoogle Scholar
  3. 3.
    Malik Z., Dishi M., and Garini Y. (1996) Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells. Photochem. Photobiol. 63, 608–614.CrossRefPubMedGoogle Scholar
  4. 4.
    Bell R. (1972) Introductory Fourier Transform Spectroscopy. Academic Press, London.Google Scholar
  5. 5.
    Telenius H., Pelmear A. H., Tunnacliffe A., et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263.CrossRefPubMedGoogle Scholar
  6. 6.
    Fan Y. S., Siu V. M., Jung J. H., and Xu J. (2000) Sensitivity of multiple color spectral karyotyping in detecting small interchromosomal rearrangements. Genet. Test 4, 9–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Heim S. and Mitelman F. (1992) Cytogenetic analysis in the diagnosis of acute leukemia. Cancer 70, 1701–1709.CrossRefPubMedGoogle Scholar
  8. 8.
    Heim S. and Mitelman F. (1995) Cancer Cytogenetics, 2 ed. Wiley-Liss, Inc., New YorkGoogle Scholar
  9. 9.
    Johansson B., Mertens F., and Mitelman F. (1993) Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. Genes Chromosomes Cancer 8, 205–218.CrossRefPubMedGoogle Scholar
  10. 10.
    Markovic V., Bouman D., Bayani J., Al-Maghrabi J., Kamel-Reid S., and Squire J. (2000) Lack of BCR/ABL Reciprocal Fusion in Varian Ph Translocations: Use of Double Fusion Signal FISH and Spectral Karyotyping. Leukemia 14, 1157–1160.CrossRefPubMedGoogle Scholar
  11. 11.
    Rowley J. D., Reshmi S., Carlson K., and Roulston D. (1999) Spectral karyotype analysis of T-cell acute leukemia. Blood 93, 2038–2042.PubMedGoogle Scholar
  12. 12.
    Rowley J. D. (2000) Molecular genetics in acute leukemia. Leukemia 14, 513–517.CrossRefPubMedGoogle Scholar
  13. 13.
    Hilgenfeld E., Padilla-Nash H., Schrock E., Ried T. (1999) Analysis of B-cell neoplasias by spectral karyotyping (SKY). Curr. Top. Microbiol. Immunol. 246, 169–174.PubMedGoogle Scholar
  14. 14.
    Gray S. G., Kytola S., Lui W. O., Larsson C., and Ekstrom T. J. (2000) Modulating IGFBP-3 expression by trichostatin A: potential therapeutic role in the treatment of hepatocellular carcinoma. Int. J. Mol. Med. 5, 33–41.PubMedGoogle Scholar
  15. 15.
    Ghadimi B. M., Schrock E., Walker R. L., et al. (1999) Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. Am. J. Pathol. 154, 525–536.CrossRefPubMedGoogle Scholar
  16. 16.
    Ghadimi B. M., Sackett D. L., Difilippantonio M. J., et al. (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27, 183–190.CrossRefPubMedGoogle Scholar
  17. 17.
    Saunders W. S., Shuster M., Huang X., et al. (2000) Chromosomal instability and cytoskeletal defects in oral cancer cells. Proc. Natl. Acad. Sci. USA 97, 303–308.CrossRefPubMedGoogle Scholar
  18. 18.
    Beheshti B., Karaskova J., Park P., Squire J., and Beatty B. (2000) Identification of a high frequency of chromosomal rearrangements in the centromeric regions of prostate cancer cell lines by sequential Giemsa-banding and spectral karyotyping. Mol. Diagn. 5, 23–32.PubMedGoogle Scholar
  19. 19.
    Luk C., Tsao M., Bayani J., Shepherd F., and Squire J. A. (2001) Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet. Cytogenet. 125, 87–99.CrossRefPubMedGoogle Scholar
  20. 20.
    Macoska J., Beheshti B., Rhim J., et al. (2000) Genetic Characterization of Immortalized Human Prostate Epithelial Cell Cultures: Evidence for Structural Rearrangements of Chromosome 8 and i(8q) Chromosome Formation in Malignant-Derived Cells. Cancer Gen. Cyto. 120, 50–57.CrossRefGoogle Scholar
  21. 21.
    Carlotti Jr C. G., Drake J. M., Hladky J., Teshima I., Becker L. E., and Rutka J. T. (1999) Primary Ewing’s sarcoma of the skull in children. utility Of molecular diagnostics, surgery and adjuvant therapies [In Process Citation]. Pediatr. Neurosurg. 31, 307–315.CrossRefPubMedGoogle Scholar
  22. 22.
    Cohen I. J., Issakov J., Avigad S., et al. (1997) Synovial sarcoma of bone delineated by spectral karyotyping [letter]. Lancet 350, 1679–1680.CrossRefPubMedGoogle Scholar
  23. 23.
    Joyama S., Ueda T., Shimizu K., et al. (1999) Chromosome rearrangement at 17q25 and xp11.2 in alveolar soft-part sarcoma: A case report and review of the literature. Cancer 86, 1246–1250.CrossRefPubMedGoogle Scholar
  24. 24.
    Pandita A., Zielenska M., Thorner P., et al. (1999) Application of comaparative genomic hybridization, spectral karyotyping, and microarray analysis in the identification of subtype-specific patterns of genomic changes in rhabdomyosarcoma. Neoplasia 1, 262–275.CrossRefPubMedGoogle Scholar
  25. 25.
    Safar A., Nelson M., Neff J. R., et al. (2000) Recurrent anomalies of 6q25 in chondromyxoid fibroma [In Process Citation]. Hum. Pathol. 31, 306–311.CrossRefPubMedGoogle Scholar
  26. 26.
    Zielenska M., Zhang Z. M., Ng K., et al. (2001) Acquisition of secondary structural chromosomal changes in pediatric ewing sarcoma is a probable prognostic factor for tumor response and clinical outcome. Cancer 91, 2156–2164.CrossRefPubMedGoogle Scholar
  27. 27.
    Barnard M., Bayani J., Grant R., Teshima I., Thorner P., and Squire J. (2000) Use of multicolor spectral karyotyping in genetic analysis of pleuropulmonary blastoma. Pediatr. Dev. Pathol. 3, 479–486.CrossRefPubMedGoogle Scholar
  28. 28.
    Bigner S. H. and Schrock E. (1997) Molecular cytogenetics of brain tumors. J. Neuropathol. Exp. Neurol. 56, 1173–1181.CrossRefPubMedGoogle Scholar
  29. 29.
    Bayani J., Zielenska M., Marrano P., et al. (2000) Molecular Cytogenetic Analysis of Medulloblastomas and Primitive Neuroectodermal Tumours Using Conventional Banding, Comparative Genomic Hybridization and Spectral Karyotyping. J. Neurosurg. 93, 437–448.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang B., Ning Y., Lamb A. N., et al. (1998) Identification of an unusual marker chromosome by spectral karyotyping. Am. J. Med. Genet. 80, 368–372.CrossRefPubMedGoogle Scholar
  31. 31.
    De Krijger R. R., Mooy C. M., Van Hemel J. O., et al. (1999) CHARGE associationrelated ocular pathology in a newborn with partial trisomy 19q and partial monosomy 21q, from a maternal translocation (19;21) (q13.1;q22.3). Pediatr. Dev. Pathol. 2, 577–581.CrossRefPubMedGoogle Scholar
  32. 32.
    Morelli S. H., Deubler D. A., Brothman L. J., Carey J. C., and Brothman A. R. (1999) Partial trisomy 17p detected by spectral karyotyping. Clin. Genet. 55, 372–375.CrossRefPubMedGoogle Scholar
  33. 33.
    Krapp M., Baschat A. A., Gembruch U., Gloeckner K., Schwinger E., and Reusche E. (1999) Tuberous sclerosis with intracardiac rhabdomyoma in a fetus with trisomy 21: cas report and review of literature. Prenat. Diagn. 19, 610–613.CrossRefPubMedGoogle Scholar
  34. 34.
    Peschka B., Leygraaf J., et al. (1999) Analysis of a de novo complex chromosome rearrangement involving chromosomes 4, 11, 12 and 13 and eight breakpoints by conventional cytogenetic, fluorescence in situ hybridization and spectral karyotyping. Prenat. Diagn. 19, 1143–1149.CrossRefPubMedGoogle Scholar
  35. 35.
    Haddad B. R., Schrock E., Meck J., et al. (1998) Identification of de novo chromosomal markers and derivatives by spectral karyotyping. Hum. Genet. 103, 619–625.CrossRefPubMedGoogle Scholar
  36. 36.
    Ning Y., Laundon C. H., Schrock E., Buchanan P., and Ried T. (1999) Prenatal diagnosis of a mosaic extra structurally abnormal chromosome by spectral karyotyping. Prenat. Diagn. 19, 480–482.CrossRefPubMedGoogle Scholar
  37. 37.
    Marquez C., Cohen J., and Munne S. (1998) Chromosome identification in human oocytes and polar bodies by spectral karyotyping. Cytogenet. Cell. Genet. 81, 254–258.CrossRefPubMedGoogle Scholar
  38. 38.
    Barlow C., Hirotsune S., Paylor R., et al. (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171.CrossRefPubMedGoogle Scholar
  39. 39.
    Coleman A. E., Forest S. T., McNeil N., Kovalchuk A. L., Ried T., and Janz S. (1999) Cytogenetic analysis of the bipotential murine pre-B cell lymphoma, P388, and its derivative macrophage-like tumor, P388D1, using SKY and CGH. Leukemia 13, 1592–1600.CrossRefPubMedGoogle Scholar
  40. 40.
    Coleman A. E., Ried T., and Janz S. (1999) Recurrent non-reciprocal translocations of chromosome 5 in primary T(12;15)-positive BALB/c plasmacytomas. Curr. Top. Microbiol. Immunol. 246, 175–180.PubMedGoogle Scholar
  41. 41.
    Coleman A. E., Schrock E., Weaver Z., et al. (1997) Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res. 57, 4585–4592.PubMedGoogle Scholar
  42. 42.
    Hardt T., Himmelbauer H., Mann W., Ropers H., and Haaf T. (1999) Towards identification of individual homologous chromosomes: comparative genomic hybridization and spectral karyotyping discriminate between paternal and maternal euchromatin in Mus musculus x M. spretus interspecific hybrids. Cytogenet. Cell. Genet. 86, 187–193.CrossRefPubMedGoogle Scholar
  43. 43.
    Liyanage M., Coleman A., du Manoir S., et al. (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat. Genet. 14, 312–315.CrossRefPubMedGoogle Scholar
  44. 44.
    McCormack S. J., Weaver Z., Deming S., et al. (1998) Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16, 2755–2766.CrossRefPubMedGoogle Scholar
  45. 45.
    Shen S. X., Weaver Z., Xu X., et al. (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124.CrossRefPubMedGoogle Scholar
  46. 46.
    Weaver Z. A., McCormack S. J., Liyanage M., et al. (1999) A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 25, 251–260.CrossRefPubMedGoogle Scholar
  47. 47.
    Wiener F., Kuschak T. I., Ohno S., and Mai S. (1999) Deregulated expression of c-Myc in a translocation-negative plasmacytoma on extrachromosomal elements that carry IgH and myc genes. Proc. Natl. Acad. Sci. USA 96, 13,967–13,972.CrossRefPubMedGoogle Scholar
  48. 48.
    Ding H., Roncari L., Shannon P., et al. (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61, 3826–3836.PubMedGoogle Scholar
  49. 49.
    Mak T. W., Hakem A., McPherson J. P., et al. (2000) Brcal required for T cell lineage development but not TCR loci rearrangement. Nat. Immunol. 1, 77–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Lefebvre L., Dionne N., Karaskova J., Squire J. A., and Nagy A. (2001) Selection for transgene homozygosity in embryonic stem cells results in extensive loss of heterozygosity. Nat. Genet. 27, 257–258.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Jane Bayani
    • 1
  • Jeremy A. Squire
    • 1
  1. 1.Ontario Cancer Institute, University Health Network, and Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoCanada

Personalised recommendations