Microarray CGH

  • Ben Beheshti
  • Paul C. Park
  • Ilan Braude
  • Jeremy A. Squire
Part of the Methods in Molecular Biology™ book series (MIMB, volume 204)

Abstract

Comparative genomic hybridization (CGH) to metaphase chromosome targets (1,2) has significantly contributed to our understanding of the cancer cytogenetics of more complex malignancies such as solid tumors (3,4). This molecular cytogenetics-based technique (hereafter referred to as “chromosome CGH”) is capable of defining genome-wide DNA copy number imbalances in sample cells relative to a normal reference in a single experiment. Chromosome CGH has greatly increased our understanding of tumor biology and progression since the minimal recurrent regions of chromosomal gain and loss are likely to contain novel oncogene(s) and tumor suppressor gene(s) respectively.

Keywords

Comparative Genomic Hybridization Genomic Clone Copy Number Change Array Comparative Genomic Hybridization Copy Number Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kallioniemi A., Kallioniemi O. P., Sudar D., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821.CrossRefPubMedGoogle Scholar
  2. 2.
    Kallioniemi O. P., Kallioniemi A., Sudar D., et al. (1993) Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin. Canc. Biol. 4, 41–46.Google Scholar
  3. 3.
    Forozan F., Karhu R., Kononen J., Kallioniemi A., and Kallioniemi O. P. (1997)Genome screening by comparative genomic hybridization. Trends Genet. 13, 405–409.CrossRefPubMedGoogle Scholar
  4. 4.
    James L. A. (1999) Comparative genomic hybridization as a tool in tumour cytogenetics. J. Pathol. 187, 385–395.CrossRefPubMedGoogle Scholar
  5. 5.
    Parente F., Gaudray P., Carle G. F., and Turc-Carel C. (1997) Experimental assessment of the detection limit of genomic amplification by comparative genomic hybridization CGH. Cytogenet. Cell Genet. 78, 65–68.CrossRefPubMedGoogle Scholar
  6. 6.
    Lennon G., Auffray C., Polymeropoulos M., and Soares M. B. (1996) The I. M. A. G. E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33, 151–152.CrossRefPubMedGoogle Scholar
  7. 7.
    Schena M., Shalon D., Davis R. W., and Brown P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  8. 8.
    DeRisi J., Penland L., Brown P. O., et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.CrossRefPubMedGoogle Scholar
  9. 9.
    Pollack J. R., Perou C. M., Alizadeh A. A., et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Beheshti B., Braude I., Marrano P., Thorner P., Zielenska M., and Squire J. A. (2002) Survey of DNA amplifications in neuroblastoma tumors using cDNA microarrays. Submitted to Neoplasia.Google Scholar
  11. 11.
    Solinas-Toldo S., Lampel S., Stilgenbauer S., et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chr. Canc. 20, 399–407.CrossRefGoogle Scholar
  12. 12.
    Pinkel D., Segraves R., Sudar D., et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211.CrossRefPubMedGoogle Scholar
  13. 13.
    Heiskanen M. A., Bittner M. L., Chen Y., et al. (2000) Detection of gene amplification by genomic hybridization to cDNA microarrays. Canc. Res. 60, 799–802.Google Scholar
  14. 14.
    Raap A. K., van de Corput M. P., Vervenne R. A., van Gijlswijk R. P., Tanke H. J., and Wiegant J. (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotinor fluorochrome tyramides. Hum. Mol. Genet. 4, 529–534.CrossRefPubMedGoogle Scholar
  15. 15.
    Jones T. A., Flomen R. H., Senger G., Nizetic D., and Sheer D. (2000) The homeobox gene MEIS1 is amplified in IMR-32 and highly expressed in other neuroblastoma cell lines. Eur. J. Canc. 36, 2368–2374.CrossRefGoogle Scholar
  16. 16.
    Spieker N., van Sluis P., Beitsma M., et al. (2001) The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics 71, 214–221.CrossRefPubMedGoogle Scholar
  17. 17.
    Pei J., Beheshti B., Squire J. A., and Zielenska M. (2002) cDNA array CGH analysis of pediatric osteosarcomas identifies regions of amplification on chromosome 17. In preparation.Google Scholar
  18. 18.
    Halgren R. G., Fielden M. R., Fong C. J., and Zacharewski T. R. (2001) Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucl. Acids Res. 29, 582–588.CrossRefPubMedGoogle Scholar
  19. 19.
    Albertson D. G., Ylstra B., Segraves R., et al. (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 25, 144–146.CrossRefPubMedGoogle Scholar
  20. 20.
    Bruder C. E., Hirvela C., Tapia-Paez I., et al. (2001) High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Hum. Mol. Genet. 10, 271–282.CrossRefPubMedGoogle Scholar
  21. 21.
    Daigo Y., Chin S. F., Gorringe K. L., et al. (2001) Degenerate oligonucleotide primedpolymerase chain reaction-based array comparative genomic hybridization for extensive amplicon profiling of breast cancers: a new approach for the molecular analysis of paraffin-embedded cancer tissue. Am. J. Pathol. 158, 1623–1631.CrossRefPubMedGoogle Scholar
  22. 22.
    Weber T., Weber R. G., Kaulich K., et al. (2000) Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol. 10, 73–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Geschwind D. H., Gregg J., Boone K., et al. (1998) Klinefelter’s syndrome as a model of anomalous cerebral laterality: testing gene dosage in the X chromosome pseudoautosomal region using a DNA microarray. Dev. Genet. 23, 215–229.CrossRefPubMedGoogle Scholar
  24. 24.
    Hui A. B., Lo K. W., Yin X. L., Poon W. S., and Ng H. K. (2001) Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab. Invest. 81, 717–723.CrossRefPubMedGoogle Scholar
  25. 25.
    Cheung V. G., Nowak N., Jang W., et al. (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, 953–958.CrossRefPubMedGoogle Scholar
  26. 26.
    Telenius H., Carter N. P., Bebb C. E., Nordenskjold M., Ponder B. A., and Tunnacliffe A. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13, 718–725.CrossRefPubMedGoogle Scholar
  27. 27.
    Cheng S., Fockler C., Barnes W. M., and Higuchi R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699.CrossRefPubMedGoogle Scholar
  28. 28.
    Lichter P., Joos S., Bentz M., and Lampel S. (2000) Comparative genomic hybridization: uses and limitations. Semin. Hematol. 37, 348–357.CrossRefPubMedGoogle Scholar
  29. 29.
    Wilgenbus K. K. and Lichter P. (1999) DNA chip technology ante portas. J. Mol. Med. 77, 761–768.CrossRefPubMedGoogle Scholar
  30. 30.
    King W., Proffitt J., Morrison L., Piper J., Lane D., and Seelig S. (2000) The role of fluorescence in situ hybridization technologies in molecular diagnostics and disease management. Mol. Diagn. 5, 309–319.PubMedGoogle Scholar
  31. 31.
    Cheung V. G., Morley M., Aguilar F., Massimi A., Kucherlapati R., and Childs G. (1999) Making and reading microarrays. Nat. Genet. 21, 15–19.CrossRefPubMedGoogle Scholar
  32. 32.
    Eisen M. B., Spellman P. T., Brown P. O., and Botstein D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.CrossRefPubMedGoogle Scholar
  33. 33.
    Brazma A. and Vilo J. (2000) Gene expression data analysis. FEBS Lett. 480, 17–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Kerr M. K., Martin M., and Churchill G. A. (2000) Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–837.CrossRefPubMedGoogle Scholar
  35. 35.
    Sherlock G., Hernandez-Boussard T., Kasarskis A., et al. (2001) The Stanford Microarray Database. Nucl. Acids Res. 29, 152–155.CrossRefPubMedGoogle Scholar
  36. 36.
    Phimister B. (1999) Going Global (Editorial). Nat. Genet. 21, 1.CrossRefGoogle Scholar
  37. 37.
    Alon U., Barkai N., Notterman D. A., et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Ben Beheshti
    • 1
  • Paul C. Park
    • 2
  • Ilan Braude
    • 1
  • Jeremy A. Squire
    • 2
  1. 1.Ontario Cancer Institute, University Health Network, and Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoCanada
  2. 2.Ontario Cancer Institute, Department of Laboratory Medicine and Pathology, University Health NetworkUniversity of TorontoTorontoCanada

Personalised recommendations