Advertisement

Multicolor Fiber FISH

  • Jaennelle Kraan
  • Anne R. M. von Bergh
  • Karin Kleiverda
  • Jan-Willem Vaandrager
  • Ekaterina S. Jordanova
  • Anton K. Raap
  • Philip M. Kluin
  • Ed Schuuring
Part of the Methods in Molecular Biology™ book series (MIMB, volume 204)

Abstract

Various genetic abnormalities can be observed in many human diseases. They vary from numerical chromosomal aberrations, deletions, and amplification of specific regions to chromosomal translocations and insertions. In the past decade, numerous fluorescence in situ hybridization (FISH) methods have been developed for the detection of these abnormalities. FISH to interphase nuclei is one of the methods that is widely used to detect numerical chromosomal abnormalities, DNA amplification, and structural abnormalities ranging in size from approximately 10–1000 kilobases. Interphase cytogenetics requires a priori knowledge regarding the DNA sequences involved in the aberration. Particularly for the diagnostic detection of structural abnormalities such as chromosomal translocation breakpoints, the interphase method is highly dependent on the availability of appropriate breakpoint flanking probes.

Keywords

Mantle Cell Lymphoma Hybridization Mixture Numerical Chromosomal Abnormality Numerical Chromosomal Aberration Drain Excess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Heng H. H. and Tsui L. C. (1998) High resolution free chromatin/DNA fiber fluorescent in situ hybridization. J. Chromatogr. A 806, 219–229.CrossRefPubMedGoogle Scholar
  2. 2.
    Bensimon A., Simon A., Chiffaudel A., Croquette V., Heslot F., and Bensimon D. (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098.CrossRefPubMedGoogle Scholar
  3. 3.
    Heiskanen M., Kallioniemi O., and Palotie A. (1996) Fiber-FISH: experiences and a refined protocol Genet. Anal. 12, 179–184. multicolor DNA fiber fluorescence in situ hybridization. Blood 88, 1177-1182.Google Scholar
  4. 4.
    Wiegant J., Kalle W., Mullenders L., et al. (1992) High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591.CrossRefPubMedGoogle Scholar
  5. 5.
    Florijn R. J., Bonden L. A., Vrolijk H., et al. (1995) High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet. 4, 831–836.CrossRefPubMedGoogle Scholar
  6. 6.
    Heng H. H., Squire J., and Tsui L. C. (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513.CrossRefPubMedGoogle Scholar
  7. 7.
    Parra I. and Windle B. (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat. Genet. 5, 17–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Inazawa J., Ariyama T., Tokino T., Tanigami A., Nakamura Y., and Abe T. (1994) High resolution ordering of DNA markers by multi-color fluorescent in situ hybridization of prophase chromosomes. Cytogenet. Cell Genet. 65, 130–135.CrossRefPubMedGoogle Scholar
  9. 9.
    Florijn R. J., van de Rijke F. M., Vrolijk H., et al. (1996) Exon mapping by fiber-FISH or LR-PCR. Genomics 15, 277–282.CrossRefGoogle Scholar
  10. 10.
    Riemersma S. A., Jordanova E. S., Schop R. F., et al. (2000) Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immuneprivileged sites. Blood 96, 3569–3577.PubMedGoogle Scholar
  11. 11.
    Vaandrager J. W., Schuuring E., Kluin-Nelemans H. C., et al. (1998) DNA fiber fluorescence in situ hybridization analysis of immunoglobulin class switching in B-cell neoplasia: aberrant CH gene rearrangements in follicle center-cell lymphoma. Blood 92, 2871–2878.PubMedGoogle Scholar
  12. 12.
    Shiels C., Coutelle C., and Huxley C. (1997) Analysis of ribosomal and alphoid repetitive DNA by fiber-FISH. Cytogenet. Cell Genet. 76, 20–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Lestou V. S., Strehl S., Lion T., Gadner H., and Ambros P. F. (1996) High-resolution FISH of the entire integrated Epstein-Barr virus genome on extended human DNA. Cytogenet. Cell Genet. 74, 211–217.CrossRefPubMedGoogle Scholar
  14. 14.
    Vaandrager J. W., Schuuring E., Zwikstra E., et al. (1996) Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by genome for highresolution studies. Blood 88, 1172–1182.Google Scholar
  15. 15.
    Vaandrager J. W., Schuuring E., Raap T., Philippo K., Kleiverda K., and Kluin P. (2000) Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes. Genes Chromosomes. Cancer 27, 85–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Von Bergh A., Emanuel B., Zelderen-Bhola S., et al. (2000) A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias. Genes Chromosomes Cancer 28, 14–22.CrossRefGoogle Scholar
  17. 17.
    Kluin Ph. M., Vaandrager J. W., van Krieken J. H. J. M., and Schuuring E. (1996) Chromosomal markers in lymphoma diagnosis. Curr. Diagn. Pathol. 3, 187–199.CrossRefGoogle Scholar
  18. 18.
    Vaandrager J. W., Schuuring E., Philippo K., and Kluin P. M. (2000) V(D)J recombinasemediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96, 1947–1952.PubMedGoogle Scholar
  19. 19.
    De Boer C. J., Vaandrager J. W., v. Krieken J. H. J. M., Holmes Z., Kluin Ph. M., and Schuuring E. (1997) Visualization of mono-allelic chromosomal aberrations 3′ and 5′ of the cyclin D1 gene in mantle cell lymphoma using DNA fiber fluorescence in situ hybridization. Oncogene 15, 1599–1603.CrossRefPubMedGoogle Scholar
  20. 20.
    Von Bergh A., Gargallo P., De Prijck B., et al. (2001) Cryptic t(4;11) encoding MLL-AF4 due to insertion of 5′ MLL sequences in chromosome 4. Leukemia 15, 595–600.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Jaennelle Kraan
    • 1
  • Anne R. M. von Bergh
    • 1
  • Karin Kleiverda
    • 1
  • Jan-Willem Vaandrager
    • 1
  • Ekaterina S. Jordanova
    • 1
  • Anton K. Raap
    • 2
  • Philip M. Kluin
    • 3
  • Ed Schuuring
    • 3
  1. 1.Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Department of PathologyUniversity Hospital GroningenGroningenThe Netherlands

Personalised recommendations