Skip to main content

Ligand Libraries for the Extraction of Metal Ions

Dynamic Combinatorial and High-Throughput Screening Methods

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

  • 521 Accesses

Abstract

Combinatorial methods have been applied with a measure of success in the field of metal ion coordination chemistry (15). High-throughput screening methods have been used to facilitate the discovery of new catalysts and to design ligands for binding metal ions (69). Metal ion coordination complexes have been central to the development of dynamic combinatorial methods as well. Dynamic combinatorial methods utilize a library whose composition is con-trolled through reversible interactions with a target molecule (10,11). Metalligand bonds are often labile enough to undergo reversible bond formation under mild conditions, making metal ions ideal components for dynamic librar-ies. Such metal ion complexes are used in dynamic combinatorial libraries for the purpose of designing compounds with unusual shapes or recognition properties (12,13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Still W. C., Hauck P., and Kempf D. (1987) Stereochemical studies of lasalocid epimers. Ion-driven epimerizations. Tetrahedron Lett. 28, 2817–2820.

    Article  CAS  Google Scholar 

  2. Hasenknopf B., Lehn J.-M., Kneisel B. O., Baum G., and Fenske D. (1996) Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. Engl. 35, 1838–1840.

    Article  CAS  Google Scholar 

  3. Hill C. L. and Zhang X. (1995) A smart catalyst that self-assembles under turn-over conditions. Nature 373, 324–326.

    Article  CAS  Google Scholar 

  4. Huc I., Krische M. J., Funeriu D. P., and Lehn J.-M. (1999) Dynamic combina-torial chemistry: substrate H-bonding directed assembly of receptors based on bipyridine-metal complexes. Eur. J. Inorg. Chem., 1415–1420.

    Google Scholar 

  5. Albrecht M., Blau O., and Frohlich R. (1999) An expansible metalla-cryptand as a component of a supramolecular combinatorial library formed from Di(8-hydrox-yquinoline) ligands and gallium (III) or zinc (II) ions. Chem. Eur. J. 5, 48–56.

    Article  CAS  Google Scholar 

  6. Burger M. T. and Still W. C. (1995) Synthetic ionophores. Encoded combi-natorial libraries of cyclen-based receptors for Cu2+ and Co2+. J. Org. Chem. 60, 7382–7383.

    Article  CAS  Google Scholar 

  7. Francis M. B., Finney N. S., and Jacobsen E.N. (1996) Combinatorial approach to the discovery of novel coordination complexes. J. Am. Chem. Soc. 118, 8983–8984.

    Article  CAS  Google Scholar 

  8. Hoveyda A. H. (1998) Catalyst discovery through combinatorial chemistry. Chem. Bio. 5, R187–R191.

    Article  CAS  Google Scholar 

  9. Francis M. B., Jamison T. F., and Jacobsen E.N. (1998) Combinatorial libraries of transition-metal complexes, catalysts and materials. Curr. Opion. Chem. Bio. 2, 422–428.

    Article  CAS  Google Scholar 

  10. Lehn J. M. (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463.

    Article  CAS  Google Scholar 

  11. Goral V., Nelen M., Eliseev A. V., and Lehn J.-M. (2001) Double-level “orthogo-nal” dynamic combinatorial libraries on transition metal template. Proc. Natl. Acad. Sci. 98, 1347–1352.

    Article  PubMed  CAS  Google Scholar 

  12. Klekota B., Hammond M. H., and Miller B. L. (1997) Generation of novel DNA-binding compounds by selection and amplification from self-assembled combina-torial libraries. Tetrahedron Lett. 38, 8639–8642.

    Article  CAS  Google Scholar 

  13. Goodman M. S., Jubian V., Linton B., and Hamilton A. D. (1995) A combinatorial library approach to artificial receptor design. J. Am. Chem. Soc. 117, 11610–11611.

    Article  CAS  Google Scholar 

  14. Yordanov A. and Roundhill M. (1998) Solution extraction of transition and post-transition heavy and precious metals by chelate and macrocyclic ligands. Coord. Chem. Rev. 170, 93–124.

    Article  CAS  Google Scholar 

  15. Nash K. L. and Choppin G. R. (1997) Separations chemistry for actinide ele-ments: recent developments and historical perspective. Separation Science and Technology 32, 255–274.

    Article  CAS  Google Scholar 

  16. Rydberg J., Musikas C., and Choppin G. R. (eds.) (1992) Principles and Prac-tices of Solvent Extraction, Marcel Dekker, New York.

    Google Scholar 

  17. Cox B. G. and Schneider H. (1992) Coordination and Transport Properties of Macrocyclic Compounds in Solution, Elsevier, New York.

    Google Scholar 

  18. Epstein D. M., Choudhary S., Churchill M. R., Keil K. M., Eliseev A. V., and Morrow J. R. (2001) Chloroform-soluble Schiff-base Zn(II) or Cd(II) complexes from a dynamic combinatorial library Inorg. Chem. 40, 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  19. Gillard R. D. and McCleverty J. A. (eds.) (1987) Zinc and cadmium, In Compre-hensive Coordination Chemistry, 1st ed, Pergamon Press, Oxford, England, vol. 5, p. 940.

    Google Scholar 

  20. Cheng K. L., Veno K., and Imammura T. Handbook of Organic and Analytical Reagents, CRC Press, Inc., Boca Raton, FL, 1982.

    Google Scholar 

  21. Epstein D. M. (2000) Cleavage of phosphodiesters and 5'-CAP of m-RNA by lanthanide (II) macrocyclic complexes and the selection of Schiff-base transition metal complexes from a dynamically generated combinatorial library Ph.D. The-sis, State University of New York at Buffalo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Choudhary, S., Morrow, J.R. (2002). Ligand Libraries for the Extraction of Metal Ions. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:215

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:215

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics