Skip to main content

Host—Guest Chemistry

Combinatorial Receptors

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

  • 531 Accesses

Abstract

At the heart of host—guest chemistry is the design and construction of artificial receptors. While great progress has been achieved in the specific recognition of a multitude of substrates, rational design has still failed to equal the degree of association strength and substrate specificity observed in nature. Evolutionary selection has allowed biopolymers to take advantage of their large size to position varied functionality in the rigid context of tertiary structure, but the limitations of chemical synthesis dictate that artificial receptors will be smaller, less structurally defined, and, as a result, less effective. Combinatorial chemistry offers a new approach to the task of receptor design by quickly creating a library of combinatorial receptors containing a variety of binding or catalytic groups, and subsequently determining the most active component of that library (15}). Combinatorial receptors also provide the possibility for using substrate binding to selectively create a receptor from a dynamic library (68). To be effective, however, library synthesis should require minimal synthetic expenditure and the entire library must be screened efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeMiguel Y. R. and Sanders J. K. M. (1997) Generation and screening of synthetic receptor libraries. Curr. Op. Chem. Biol. 2, 417–421.

    Article  Google Scholar 

  2. Chen C.-T., Wagner H., and Still W. C. (1998) Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279, 851–853.

    Article  PubMed  CAS  Google Scholar 

  3. Haberhauer G., Somogyi L., and Rebek J. (2000) Synthesis of a second-generation pseudopeptide platform. Tetrahedron Lett. 41, 5013–5016.

    Article  CAS  Google Scholar 

  4. Calama M. C., Hulst R., Fokkens R., Nibbering N. M. M., Timmerman P., and Reinhoudt D. N. (1998) Libraries of non-covalent hydrogen-bonded assemblies; combinatorial synthesis of supramolecular systems. Chem. Commun., 1021–1022.

    Google Scholar 

  5. Shimizu K. D., Snapper M. L., and Hoveyda A. H. (1998) High-throughput strategies for the discovery of catalysis. Chem. Eur. J. 4, 1885–1889.

    Article  CAS  Google Scholar 

  6. Lehn J.-M. and Eliseev A. V. (2001) Dynamic combinatorial chemistry. Science 291, 2331–2332.

    Article  PubMed  CAS  Google Scholar 

  7. Epstein D. M., Choudhary S., Churchill M. R., Keil K. M., Eliseev A. V., and Morrow J. R. (2001) Chloroform-soluble schiff-base Zn(II) or Cd(II) complexes from a dynamic combinatorial library. Inorg. Chem. 40, 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  8. Calama M. C., Timmerman P., and Reinhoudt D. N. (2000) Guest-templated selection and amplification of a receptor by noncovalent combinatorial synthesis. Angew. Chem. Int. Ed. 39, 755–757.

    Article  CAS  Google Scholar 

  9. Linton B. and Hamilton A. (1997) Formation of artificial receptors by metaltemplated self-assembly. Chem. Rev. 97, 1669–1680.

    Article  PubMed  CAS  Google Scholar 

  10. Goodman M. S., Weiss J., and Hamilton A. D. (1994) A self-assembling receptor for dicarboxylic acids. Tetrahedron Lett. 35, 8943–8946.

    Article  CAS  Google Scholar 

  11. Goodman M. S., Jubian V., and Hamilton A. D. (1995) Metal-templated receptors for the effective complexation of dicarboxylates. Tetrahedron Lett. 36, 2551–2554.

    Article  CAS  Google Scholar 

  12. Goodman M. S., Hamilton A. D., and Weiss J. (1995) Self-assembling chromogenic receptors for the recognition of dicarboxylic acids. J. Am. Chem. Soc. 117, 8447–8455.

    Article  CAS  Google Scholar 

  13. Constable E. C. and Thompson A. M. W. C. (1995) Strategies for the assembly of homo-and hetero-nuclear metalosupramolecules containing 2,2′:6′,2″-terpyridine metal-binding domains. J. Chem. Soc. Dalton Trans., 1615–1627.

    Google Scholar 

  14. Potts K. T., Usifer D. A., Guadalupe A., and Abruna H. D. (1987) 4-Vinyl, 6-vinyl, and 4'vinyl-2,2':6',2"terpyridinyl ligands: Their synthesis and the electrochemistry of their transition-metal coordination complexes. J. Am. Chem. Soc. 109, 3961–3967.

    Article  CAS  Google Scholar 

  15. Goodman M. S., Jubian V., Linton B., and Hamilton A. D. (1995) A combinatorial library approach to artificial receptor design. J. Am. Chem. Soc. 117, 11610–11611.

    Article  CAS  Google Scholar 

  16. Sauvage J.-P., Collin J.-P., Chambron J.-C., Guillerez S., and Coudret C. (1994) Ruthenium(II) and osmiun(II) bis(terpyridine) complexes in covalentlylinked multicomponent systems: Synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties. Chem. Rev. 94, 993–1019.

    Article  CAS  Google Scholar 

  17. Constable E. C., Ward M. D., and Corr S. (1988) A convenient high yield synthesis of terpyridine. Inorg. Chim. Acta. 141, 201–203.

    Article  CAS  Google Scholar 

  18. McCollum D. G., Yap G. P. A., Rhinegold A. L., and Bosnich B. (1996) Bimetallic reactivity—Synthesis of bimetallic complexes of macrocyclic binucleating ligands containing 6-coordinate and 4-coordinate sites and their reactivity with dioxygen and other oxidants. J. Am. Chem. Soc. 118, 1365–1379.

    Article  CAS  Google Scholar 

  19. Linton B. and Hamilton A. D. (1999) Calorimetric investigation of guanidiniumcarboxylate interactions. Tetrahedron 55, 6027–6038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Linton, B.R. (2002). Host—Guest Chemistry. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:111

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics