Skip to main content

Gene Transfer in Avian Embryos Using Replication-Competent Retroviruses

  • Protocol
Molecular Embryology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 97))

Abstract

A series of replication-competent, avian-specific retroviral vectors known as RCAS or RCAN have been developed by Hughes et al. (1) and used successfully by a rapidly expanding number of groups to assess gene function directly (e.g., refs. 214). These proviral vectors are derived from the Rous sarcoma virus and contain a unique ClaI restriction site in place of the region normally encoding the src oncogene, into which foreign DNA fragments of up to approx 2.4 kb can be inserted. An Escherichia coli plasmid backbone allows the gene of choice to be introduced by standard subcloning techniques, whereas retention of the viral long terminal repeat (LTR) sequences together with sequences encoding the viral gag, pol, and env genes facilitates viral replication and transmission. RCAN is a variant of RCAS from which the splice acceptor immediately upstream of the ClaI site has been removed preventing translation of the inserted gene and acts as a control for nonspecific effects owing to viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J., and Sutrave, P. (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol. 61, 3004–3012.

    PubMed  CAS  Google Scholar 

  2. Morgan, B. A., Izpisúa-Belmonte, J.-C., Duboule, D., and Tabin, C. J. (1992) Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239.

    Article  PubMed  CAS  Google Scholar 

  3. Riddle, R. D., Johnson, R. L., Laufer, E., and Tabin, C. (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson, R. L., Laufer, E., Riddle, R. D., and Tabin, C. (1994) Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79, 1165–1173.

    Article  PubMed  Google Scholar 

  5. Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M., and Tabin, C. (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640.

    Article  PubMed  CAS  Google Scholar 

  6. Vogel, A., Rodriguez, C., Warnken, W., and Izpisúa-Belmonte, J. C. (1995) Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378, 716–720.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, Y. and Niswander, L. (1995) Interaction between the signalling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80, 939–947.

    Article  PubMed  CAS  Google Scholar 

  8. Itasaki, N. and Nakamura, H. (1996) A role for gradient en expression in positional specification of the optic tectum. Neuron 16, 55–62.

    Article  PubMed  CAS  Google Scholar 

  9. Logan, C., Wizenmann, A., Drescher, U., Monschau, B., Bonhoeffer, F., and Lumsden, A. (1996) Rostral optic tectum acquires caudal characteristics following ectopic Engrailed expression. Curr. Biol. 6, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  10. Friedman, G. and O’Leary, D. (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J. Neurosci. 16, 5498–5509.

    PubMed  CAS  Google Scholar 

  11. Yuasa, J., Hirano, S., Yamagata, M., and Noda, M. (1996) Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382, 632–635.

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez-Esteban, C., Schwabe, J. W. R., De La Peña, J., Foys, B., Eshelman, B., and Izpisúa-Belmonte, J. C. (1997) Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360–366.

    Article  PubMed  CAS  Google Scholar 

  13. Laufer, E., Dahn, R., Orozco, O. E., Yeo, C.-Y., Pisenti, J., Henrique, D., Abbott, U. K., Fallon, J. F., and Tabin, C. (1997) Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366–373.

    Article  PubMed  CAS  Google Scholar 

  14. Logan, C., Hornbruch, A., Campbell, I., and Lumsden, A. (1997) The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124, 2317–2324.

    PubMed  CAS  Google Scholar 

  15. Fekete, D. M. and Cepko, C. L. (1993) Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol. Cell. Biol. 13, 2604–2613.

    PubMed  CAS  Google Scholar 

  16. Morgan, B. A. and Fekete, D. M. (1995) Manipulating gene expression with replication competent retroviruses. Methods Cell Biol. 51, 185–218.

    Article  Google Scholar 

  17. Petropoulos, C. J. and Hughes, S. H. (1991) Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol. 65, 3728–3737.

    PubMed  CAS  Google Scholar 

  18. Potts, W. M., Olsen, M., Boettiger, D., and Vogt, V. M. (1987) Epitope mapping of monoclonal antibodies to gag protein p19 of avian sarcoma and leukaemia viruses. J. Gen. Virol. 68, 3177–3182.

    Article  PubMed  CAS  Google Scholar 

  19. Moscovici, C., Moscovici, M. G., Jimenez, H., Lai, M. M., Hayman, M. J., and Vogt, P. K. (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11, 95–103.

    Article  PubMed  CAS  Google Scholar 

  20. Homburger, S. A. and Fekete, D. M. (1996) High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses. Dev. Dyn. 206, 112–120.

    Article  PubMed  CAS  Google Scholar 

  21. Evan, G. I., Lewis, G. K., Ramsay, G., and Bishop, J. M. (1985) Isolation of monoclonal antibodies specific for the human c-myc oncogene product. Mol. Cell Biol. 75, 3610–3616.

    Google Scholar 

  22. Hopp, T. P., Prickett, K. S., Price, V., Libby, R. T., March, C. J., Cerretti, P., Urdal, D. L., and Conlon, P. J. (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6, 1205–1210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Logan, C., Francis-West, P. (1999). Gene Transfer in Avian Embryos Using Replication-Competent Retroviruses. In: Sharpe, P.T., Mason, I. (eds) Molecular Embryology. Methods in Molecular Biology™, vol 97. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-270-8:539

Download citation

  • DOI: https://doi.org/10.1385/1-59259-270-8:539

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-387-0

  • Online ISBN: 978-1-59259-270-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics