Skip to main content

Tissue Recombinations in Collagen Gels

  • Protocol
Molecular Embryology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 97))

Abstract

The characterization of molecular and antigenic markers that identify specific vertebrate cells has increased dramatically in recent years. As a result, patterns of cell differentiation and development can be observed in vivo, and subsequently, the tissue interactions and differentiation factors that may operate to establish these patterns can be examined in vitro. Three-dimensional collagen gels provide a culture environment in which in vitro assays can be established, and used to assess the biological activity of one tissue or protein in patterning cells within a second potentially responsive tissue. Initially developed as a means to culture embryonic neuronal tissue and examine the effect of trophic factors (1), such gels have been used more recently to identify tissues and molecules responsible for inductive (217), chemotropic (1823), and chemorepulsive (24,25) interactions. The advantages of a three-dimensional culture system are especially marked when the amount of material that is available to assay is limiting, and so, to date, they have been especially useful in the development of functional bioassays for explanted embryonic tissue. When used in conjunction with in vivo assays, such as described in Chapters 1719, results obtained from such three-dimensional in vitro assays are especially compelling and can be used to extend and evaluate rapidly an observation made initially in an in vivo bioassay. The ability to assay specific tissues in isolation has many advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebendal, T. and Jacobson, C. O. (1977) Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia. Exper. Cell. Res. 105, 379–387.

    Article  CAS  Google Scholar 

  2. Basler, K., Edlund, T., Jessell, T. M., and Yamada, T. (1993) Control of cell pattern in the neural tube: Regulation of cell differentiation by dorsalin-1, a novel TGFbeta family member. Cell 73, 687–702.

    Article  PubMed  CAS  Google Scholar 

  3. Ericson, J., Muhr. J., Placzek, M. A., Lints, T., Jessell, T. M., and Edlund, T. (1995) Sonic Hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Cell 81, 747–756.

    Article  PubMed  CAS  Google Scholar 

  4. Fan, C. M. and Tessier-Lavigne, M. (1994) Patterning of mammalian somites by surface ectoderm and notochord: Evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  5. Fan, C.-M., Porter, J. A., Chiang, C., Chang, D. T., Beachy, P. A., and Tessier-Lavigne, M. (1995) Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signalling pathway. Cell 181, 457–465.

    Article  Google Scholar 

  6. Marti, E., Bumcrot, D. A., Takada, R., and McMahon, A. P. (1995) Requirement of 19K form of Sonic hedgehog peptide for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325.

    Article  PubMed  CAS  Google Scholar 

  7. Placzek, M., Tessier-Lavigne, M., Yamada, T., Jessell, T., and Dodd, J. (1990) Mesodermal control of neural cell identity: Floor plate induction by the notochord. Science 250, 985–988.

    Article  PubMed  CAS  Google Scholar 

  8. Placzek, M., Jessell, T. M., and Dodd, J. (1993) Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development 117, 205–218.

    PubMed  CAS  Google Scholar 

  9. Roelink, H., Augsburger, A., Heemskerk, J., Korzh, V., Norlin, S., Ruiz i Altaba, A., Tanabe, Y., Placzek, M., Edlund, T., and Jessell, T. M. (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775.

    Google Scholar 

  10. Roelink, H., Porter, J. A., Chiang, C., Tanabe, Y., Chang, D. T., Beachy, P. A., and Jessell, T. M. (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455.

    Article  PubMed  CAS  Google Scholar 

  11. Ruiz i Altaba, A., Placzek, M., Baldassare, M., Dodd, J., and Jessell, T. M. (1995) Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF3-beta. Devel. Biol. 170, 299–313.

    Google Scholar 

  12. Tanabe, Y., Roelink, H., and Jessell, T. M. (1995) Induction of motor neurons by sonic hedgehog is independent of floor plate induction. Curr. Biol. 5, 651–658.

    Article  PubMed  CAS  Google Scholar 

  13. Yamada, T., Placzek, M., Tanaka, H., Dodd, J., and Jessell, T. M. (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647.

    Article  PubMed  CAS  Google Scholar 

  14. Yamada, T., Pfaff, S. L., Edlund, T., and Jessell, T. M. (1993) Control of cell pattern in the neural tube: Motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686.

    Article  PubMed  CAS  Google Scholar 

  15. Hynes, M., Poulsen, K., Tessier-Lavigne, M., and Rosenthal, A. (1995) Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80, 95–101.

    Article  PubMed  CAS  Google Scholar 

  16. Hynes, M., Porter, J. A., Chiang, C., Chang, D., Tessier-Lavigne, M., Beachy, P. A., and Rosenthal, A. (1995) Induction of midbrain dopaminergic neurons by sonic hedgehog. Neuron 15, 35–44.

    Article  PubMed  CAS  Google Scholar 

  17. Liem, K. F., Tremml, G., Roelink, H., and Jessell, T. M. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979.

    Article  PubMed  CAS  Google Scholar 

  18. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G. S., Dodd, J., and Jessell, T. M. (1988) Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778.

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy, T. E., Serafini, T., del, T. J., and Tessier, L. M. (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435.

    Article  PubMed  CAS  Google Scholar 

  20. Serafini, T., Kennedy, T. E., Galko, M. J., Mirzayan, C., Jessell, T. M., and Tessier, L. M. (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424.

    Article  PubMed  CAS  Google Scholar 

  21. Heffner, C. D., Lumsden, A. G. S., and O’Leary, D. D. M. (1990) Target control of collateral extension and directional axon growth in the mammalian brain. Science 247, 217–247.

    Article  PubMed  CAS  Google Scholar 

  22. Lumsden, A. G. S. and Davies, A. M. (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788.

    Article  PubMed  CAS  Google Scholar 

  23. Lumsden, A. G. S. and Davies, A. M. (1986) Chemotropic effect of specific target epithelium in developing mammalian nervous system. Nature 323, 538,539.

    Article  Google Scholar 

  24. Colamarino, S. A. and Tessier-Lavigne, M. (1995) The axonal chemoattractant Netrin-1 is also a chemorepellant for trochlear motor axons. Cell 81, 621–629.

    Article  PubMed  CAS  Google Scholar 

  25. Messersmith, E. K., Leonardo, E. D., Shatz, C., Tessier-Lavigne, M., Goodman, C. S., and Kolodkin, A. L. (1995) Semaphorin III can function as a selective chemorepellant to pattern sensory projections in the spinal cord. Neuron 14, 949–959.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Placzek, M., Dale, K. (1999). Tissue Recombinations in Collagen Gels. In: Sharpe, P.T., Mason, I. (eds) Molecular Embryology. Methods in Molecular Biology™, vol 97. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-270-8:293

Download citation

  • DOI: https://doi.org/10.1385/1-59259-270-8:293

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-387-0

  • Online ISBN: 978-1-59259-270-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics