Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 96))

Abstract

The region of an antigen that interacts with an antibody is defined as an epitope. For protein antigens, epitopes may involve a single length of the polypeptide chain (sequential or linear epitopes) or may be composed of several widely separated, discrete amino acid sequences that come together in the folded native portion (conformational or discontinuous epitopes) (1). Complete definition of the structure of an epitope can be achieved by X-ray crystallography of antigen-antibody cocrystals, but to date only a limited number of protein epitopes (all of the discontinuous type) have been defined by this method (1,2). These studies, however, have suggested that the epitopes of native protein consist of 15–22 residues with a smaller subset of 5–6 residues contributing most of the binding energy. It is important to note that these critical residues may not be arranged in a linear sequence (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laver, W. G., Air, G. M. Webster, R. G., and Smith-Gill, S. J. (1990) Epitopes on protein antigens: Misconceptions and realities. Cell 61, 553–556.

    Article  PubMed  CAS  Google Scholar 

  2. Davies, D. R. and Cohen, G. H. (1996) Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Google Scholar 

  3. DeLisser, H. M., Baldwin, H. S., and Albelda, S. M. (1997) PECAM-1/CD31-a multifunctional vascular cell adhension molecule. Trends Cardiovasc. Med. 8, 203–210.

    Article  Google Scholar 

  4. Yan, H., Pilewski, J. M., Zhang, Q., DeLisser, H. M., Romer, L., and Albelda, S. M. Localization of multiple functional domains on human PECAM-1 (CD31) by monoclonal antibody epitope mapping. Cell Adhesion Commun. 3, 45–66.

    Google Scholar 

  5. Liao, F., Huynh, H. K., Eiro, A., Greene, T., Polizzi, E., and Muller, M. A. (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve seperate molecular domains of PECAM-1. J. Exp. Med. 182, 1337–1343.

    Article  PubMed  CAS  Google Scholar 

  6. Ashman, L. K., Aylett, G. W., Cambareri, A. C., and Cole, S. R. (1991) Different epitopes of the CD31 antigen identified by monoclonal antibodies: cell type-specific patterns of expression. Tissue Antigens 38, 199–207.

    Article  PubMed  CAS  Google Scholar 

  7. Roost, H. P., Haag, A., Burkhart, C., and Zinkernagel, R. M. (1996) Mapping of the dominant neutralizing antigenic site of a virus using infected cells. J. Immunol. Methods 189, 233–242.

    Article  PubMed  CAS  Google Scholar 

  8. Perton, F. G., Dijkema, J. H., Smilda, T., Erikvan Ufflen, B., and Beintema, J. J. (1996) Comparison of three methods for competive binding of monoclonal antibodies. The localization of antigenic sites for monoclonal antibodies on Panulirus interruptus hemocyanin. J. Immunol. Methods 190, 117–125.

    Google Scholar 

  9. Pietu, G., Ribba, A., Cherel, G., Siguret, V., Obert, B., Rouault, C., Ginsburg, D., and Meyer, D. (1994) Epitope mapping of inhibitory monoclonal antibodies to human von Willebrand factor by using recombinant cDNA libraries. Thromb. Haemost. 71, 788–792.

    PubMed  CAS  Google Scholar 

  10. van Zonneveld, A. J. van den Berg, B. M., van Meijer, M., and Pannekoek, H. (1995) Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 167, 49–52.

    Article  PubMed  Google Scholar 

  11. Peterson, G., Song, D., Hugle-Dorr, B., Oldenburg, I., and Bautz, E. K. (1995) Mapping of linear epitopes recognized by monoclonal antibodies with genefragment phage display libraries. Mol. Gen. Gene. 249, 425–431.

    Google Scholar 

  12. Rao Y., Wu, X., Gariepy, J., Rutishauser, U., and Siu, C. (1992) Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J. Cell Biol. 118, 937–949.

    Article  PubMed  CAS  Google Scholar 

  13. Tzartos, S. J. and Remouunds M. S. (1992) Precise epitope mapping of monoclonal antibodies to the cytoplasmic side of the acetycholine receptor a subunit. Eur. J. Biochem. 207, 915–922.

    Article  PubMed  CAS  Google Scholar 

  14. Li, F., Erickson, H. P., James, J. A., Moore K. L. Cummings, R. D., and McEver, R. P. (1996) Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and the mapping of protein epitopes for monoclonal antibodies. J. Biol. Chem. 271, 6342–6348.

    Article  PubMed  CAS  Google Scholar 

  15. Ueno, H., Masuko, T., Wang, J., and Hashimoto, Y. (1994) Epitope mapping of bovine serum albumin using monoclonal antibodies coupled with a photoreactive crosslinker. J. Biochem. 115, 1119–1127.

    PubMed  CAS  Google Scholar 

  16. Yuan, J. and Low P. S. (1992) Epitope mapping by a method that requires no amino acid sequence information. Anal. Biochem. 205, 179–182.

    Article  PubMed  CAS  Google Scholar 

  17. Fawcett J., Buckley, C., Holness, C. L., Bird, I. N., Spragg, J. H. Saunders J., Harris, A., and Simmons, D. L. (1995) Mapping the homotypic binding sites in CD31 and the role of CD31 adhesion in the formation of intraendothelial cell contacts. J. Cell. Biol. 128, 1229–1241.

    Article  PubMed  CAS  Google Scholar 

  18. Takada, Y. and Puzon W. (1993) Identification of a regulatory region of integrin β1 subunit using activating and inhibiting antibodies. J. Biol. Chem. 268, 17,597–17,601.

    PubMed  CAS  Google Scholar 

  19. Shih, D., Edleman, J. M., Horwitz, A. F., Grunwald, G. B., and Buck, C. A. (1993) Structure/function analysis of the integrin β1 subunit by epitope mapping. J. Cell. Biol. 122, 1361–1371.

    Article  PubMed  CAS  Google Scholar 

  20. Schiffer, S. G., Hemler, M. E., Lobb, R. R., and Osborn, L. (1995) Molecular mapping of functional antibody binding sites of the alpha 4 integrin. J. Biol. Chem. 270, 14,270–14,273.

    PubMed  CAS  Google Scholar 

  21. Binnerts, M. E. van Kooyk, Y., Edwards, C. P., Champe, M., Presta, L., Bodary, S. C. Figdor, C. G., and Berman, P. W. (1996) Antibodies that selectively inhibit leukocyte-function-associated antigen 1 binding to intracellular adhesion molecule-3 recognize a unique epitope within the CD11a I domain. J. Biol. Chem. 271, 9962–9968.

    Article  PubMed  CAS  Google Scholar 

  22. Tomlinson, M. G., Williams, A. F., and Wright, M. D. (1993) Epitope mapping of anti-rat CD53 monoclonal antibodies. Implications for the membrane orientation of the transmembrane 4 superfamily. Eur. J. Immunol. 23, 136–140.

    Article  PubMed  CAS  Google Scholar 

  23. Sun, W., Cohen, S. A., and Barchi, R. L. (1995) Localization of epitopes for monoclonal antibodies directed against the adult rat skeletal muscle sodium channel (rSkM1) using polymerase chain reaction, fusion proteins and western blotting. Anal. Biochem. 226, 188–191.

    Article  PubMed  CAS  Google Scholar 

  24. Ni, Y., Tominaga, Y., Honda Y., Morimoto, K., Sakamoto, S. and Kawai, A. (1995) Mapping and characterization of a sequential epitope on the rabies virus glycoprotein which is recognized by a neutralizing monoclonal antibody, RG719. Microbiol. Immunol. 39, 693–702.

    PubMed  CAS  Google Scholar 

  25. Bazzoni, G., Shih, D. T., Buck, C. A. and Hemler, M. E. (1995) Monoclonal antibody 9EG7 defines a novel beta 1 intergrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem. 270, 25,570–25,577.

    Article  PubMed  CAS  Google Scholar 

  26. Horton, R. M., Cai, Z., Ho, S. N. and Pease, L. R. (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535.

    PubMed  CAS  Google Scholar 

  27. DeLisser, H. M., Yan, H., Newman, P. J., Muller, W. A., Buck, C. A., and Albelda, S. M. (1993) Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J. Biol. Chem. 268, 16,037–16,046.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

DeLisser, H.M. (1999). Epitope Mapping. In: Dejana, E., Corada, M. (eds) Adhesion Protein Protocols. Methods in Molecular Biology, vol 96. Humana Press. https://doi.org/10.1385/1-59259-258-9:11

Download citation

  • DOI: https://doi.org/10.1385/1-59259-258-9:11

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-417-4

  • Online ISBN: 978-1-59259-258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics