Skip to main content

Integrin Gene Targeting

  • Protocol
Integrin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 129))

Abstract

Gene ablation, also known as knockout, is a powerful method to analyze gene function in vivo. Many integrin genes have been disrupted already, confirming but also contradicting previous results (1). In addition, new functions have been revealed, significantly increasing our understanding of the biological roles of integrins. Knockout of the remaining integrins will similarly elucidate their function during development. In addition, knockins of subtle mutations (2,3) and conditional knockouts (4,5), resulting in tissue-specific or temporally restricted gene ablation, will allow us to assess structure-function relationships of integrins in vivo and to investigate the function of integrins in a specific cell type at a specific time point in development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fässler, R., Georges-Labouesse, E., and Hirsch, E. (1996) Genetic analyses of integrin function in mice. Curr. Opin. Cell Biol. 8, 641–646.

    Article  PubMed  Google Scholar 

  2. Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A. B., and Joyner, A. L. (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, Y., Schnegelsberg, P. N., Dausman, J., and Jaenisch, R. (1996) Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379, 823–825.

    Article  PubMed  CAS  Google Scholar 

  4. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  PubMed  CAS  Google Scholar 

  5. Orban, P. C., Chui, D., and Marth, J. D. (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6861–6865.

    Article  PubMed  CAS  Google Scholar 

  6. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  7. Martin, G. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  8. Smithies, O., Gergg, R. G., Boggs, S. S., Koralewski, M. A., and Kuckerlapati, M. S. (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–234.

    Article  PubMed  CAS  Google Scholar 

  9. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  10. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  11. Deng, C. and Capecchi, M. R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371.

    PubMed  CAS  Google Scholar 

  12. Bollag, R. J., Waldman, A. S., and Liskay, R. M. (1989) Homologous recombination in mammalian cells. Annu. Rev. Genet. 23, 199–225.

    Article  PubMed  CAS  Google Scholar 

  13. Mombaerts, P., Clarke, A. R., Hooper, M. L., and Tonegawa, S. (1991) Creation of a large genomic deletion at the T-cell antigen receptor β-subunit locus in mouse embryonic stem cells by gene targeting. Proc. Natl. Acad. Sci. U. S. A. 88, 3084–3087.

    Article  PubMed  CAS  Google Scholar 

  14. Fässler, R., Pfaff, M., Murphy, J., Noegel, A., Johansson, S., Timpl, R., and Albrecht R. (1995) Lack of β1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J. Cell Biol. 128, 979–988.

    Article  PubMed  Google Scholar 

  15. Zijlstra, M., Bix, M., Simister, N. E., Loring, J. M., Raulet, D. H., and Jaenisch, R. (1990) β2-Microglobulin deficient mice lack CD4-8+ cytotoxic T cells. Nature 344, 742–746.

    Article  PubMed  CAS  Google Scholar 

  16. Fässler, R., Martin, K., Forsberg, E., Litzenberger, T., and Iglesias, A. (1995) Knockout mice: how to make them and why. The immunological approach. Int. Arch. Allergy Immunol. 106, 323–334.

    Article  PubMed  Google Scholar 

  17. Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Kaomei, G., Gullberg, D., Hescheler, J., Addicks, K., and Wobus, A. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999.

    PubMed  Google Scholar 

  18. Hirsch, E., Iglesias, A., Potocnik, A. J., Hartmann, U., and Fässler, R. (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380, 171–175.

    Article  PubMed  CAS  Google Scholar 

  19. Fässler, R. and Meyer, M. (1995) Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908.

    Article  PubMed  Google Scholar 

  20. Bloch, W., Forsberg, E., Lentini, S., Brakebusch, C., Martin, K., Krell, H. W., Weidle, U. H., Addicks, K., and Fässler, R. (1997) β1 integrin is essential for teratoma growth and angiogenesis. J. Cell Biol. 139, 265–278.

    Article  PubMed  CAS  Google Scholar 

  21. Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.

    Article  PubMed  CAS  Google Scholar 

  22. Bagutti C., Wobus A. M., Fässler, R., and Watt, F. M. (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and β1 integrin-deficient cells. Dev. Biol. 179, 184–196.

    Article  PubMed  CAS  Google Scholar 

  23. te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  24. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  25. Matsui, Y., Zsebo, K., and Hogan, B. L. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.

    Article  PubMed  CAS  Google Scholar 

  26. Doell, R. and Kretchmer, N. (1962) Studies of small intestine during development. I. Distribution and activity of β-galactosidase. Biochim. Biophys. Acta 62, 353–362.

    Article  PubMed  CAS  Google Scholar 

  27. te Riele, H., Maandag, E. R., Clarke, A., Hooper, M., and Berns, A. (1990) Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651.

    Article  Google Scholar 

  28. Mortenssen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G. (1991) Embryonic stem cells lacking a functional inhibitory G-protein subunit (αi2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA 88, 7036–7040.

    Article  Google Scholar 

  29. Mortenssen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. T., and Seidman, J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395.

    Google Scholar 

  30. George, E. L. and Hynes, R. O. (1994) Gene targeting and generation of mutant mice for studies of cell-extracellular matrix interactions. Meth. Enzymol. 245, 386–420.

    Article  PubMed  CAS  Google Scholar 

  31. Damjanov, I. and Solter, D. (1974) Experimental teratoma. Curr. Top. Pathol. 59, 69–130.

    PubMed  CAS  Google Scholar 

  32. Ghattas, E. R., Sanes, J. R., and Majors, J. E. (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell Biol. 11, 5848–5859.

    PubMed  CAS  Google Scholar 

  33. Evstafieva, A. G, Ugarova, T. Y., Chernov, B. K., and Shatsky, I. N. (1991) A complex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 19, 665–671.

    Article  PubMed  CAS  Google Scholar 

  34. Kellendonk, C., Tronche, F., Monaghan, A. P., Angrand, P. O., Stewart, F., and Schutz, G. (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411.

    Article  PubMed  CAS  Google Scholar 

  35. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10,887–10,890.

    Article  PubMed  CAS  Google Scholar 

  36. McMahon, A. P. and Bradley, A. (1990) The Wnt-1 (int) proto-oncogene is required for the development of a large region of the mouse brain. Cell 62, 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  37. Schwartzberg, P. L., Goff, S. P., and Robertson, E. J. (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803.

    Article  PubMed  CAS  Google Scholar 

  38. Tucker, K. L., Wang, Y., Dausman, J., and Jaenisch, R. (1997) A transgenic mouse strain expressing four drug-selectable marker genes. Nucl Acids Res. 25, 3745–3746.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Talts, J.F., Brakebusch, C., Fässler, R. (1999). Integrin Gene Targeting. In: Howlett, A. (eds) Integrin Protocols. Methods in Molecular Biology, vol 129. Humana Press. https://doi.org/10.1385/1-59259-249-X:153

Download citation

  • DOI: https://doi.org/10.1385/1-59259-249-X:153

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-569-0

  • Online ISBN: 978-1-59259-249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics