Skip to main content

Efficient Extraction of RNA from Vascular Tissue

  • Protocol
Vascular Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 30))

  • 564 Accesses

Abstract

The development of new and effective techniques to study differential gene expression has revolutionized biomedical research during the last decade. Such techniques include differential display reverse transcription polymerase chain reaction (ddRTPCR) (see Chapter 9), first described in 1992 (1), cDNA representational difference analysis (cDNA RDA) (see Chapter 8), first described in 1994 (2), and serial analysis of gene expression (SAGE), first described in 1995 (3). All have the potential to be powerful tools in the study of gene expression in healthy and diseased vascular tissue. The starting material in all these gene expression studies is high quality RNA. However, it is widely realized that the efficient extraction of such RNA from vascular tissue is difficult, for reasons that will be described later. The majority of studies on gene expression in vascular disease to date have used cultured vascular cells (46), as the RNA extraction is easier and the yield greater than from solid tissue. However, cell culture per se induces changes in gene expression, and so the use of the intact tissue would be a more valid approach for studying gene expression in vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  CAS  PubMed  Google Scholar 

  2. Hubank, M. and Schatz, D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648.

    Article  CAS  PubMed  Google Scholar 

  3. Velculescu, V. E., Zhang, I., Vogelstein, B., and Kinzler, K. W. (1995) Serial Analysis of Gene Expression. Science 270, 484–487.

    Article  CAS  PubMed  Google Scholar 

  4. Hultgårdh-Nilsson, A., Lövdahl, C.. Blomgren, K., Kallin, B., and Thyberg, J. (1997) Expression of phenotype-and proliferation-related genes in rat aortic smooth muscle cells in primary culture. Cardiovasc. Res. 34, 418–430.

    Article  PubMed  Google Scholar 

  5. Koike, H., Karas, R. H., Baur, W. E., O’Donnell Jr., T. F., and Mendelsohn, M. E. (1996) Differential display polymerase chain reaction identifies nucleophosmin as an estrogen-regulated gene in human vascular smooth muscle cells. J. Vasc. Surg. 23, 477–482.

    Article  CAS  PubMed  Google Scholar 

  6. Kirschenlohr, H. L., Metcalfe, J. C., Weissberg, P. L., and Grainger, D. J. (1993) Adult human aortic smooth muscle cells in culture express active TGFβ. Am. J. Physiol. 265, C571–C576.

    CAS  PubMed  Google Scholar 

  7. Gauthier, E. R., Madison, S. D., and Michel, R. N. (1997) Rapid RNA isolation without the use of commercial kits: application to small tissue samples. Pflugers Arch.-Eur. J. Physiol. 433, 664–668.

    Article  CAS  Google Scholar 

  8. Chomczynski, P. and Sacchi, N. (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 115 419–423.

    Google Scholar 

  9. Biogenesis (1991) Tel-Test Bulletin No. 2.

    Google Scholar 

  10. Jones, P., Qiu, J., and Rickwood, D. (1994) RNA Isolation and Analysis, Bios Scientific Publishers, Oxford, UK.

    Google Scholar 

  11. Galea, J., Armstrong, J., Gadson, P., Holden, H., Francis, S. E., Holt, C. M. (1996) Interleukin-1β in coronary arteries of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 16, 1000–1006.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Townsend, C.F., Newman, C.M.H., Francis, S.E. (1999). Efficient Extraction of RNA from Vascular Tissue. In: Baker, A.H. (eds) Vascular Disease. Methods in Molecular Medicine™, vol 30. Humana Press. https://doi.org/10.1385/1-59259-247-3:39

Download citation

  • DOI: https://doi.org/10.1385/1-59259-247-3:39

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-731-1

  • Online ISBN: 978-1-59259-247-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics