Skip to main content

Genomic Analysis Utilizing the Yeast Two-Hybrid System

  • Protocol
Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 175))

Abstract

As the completion of genome sequencing efforts leads to the definition of increasing numbers of genes, the need to reliably assign function to identified coding sequences becomes paramount. One means of gaining initial insight into the function of an undefined protein is to develop a map of other defined proteins with which it physically or functionally interacts. There are several approaches to assigning interacting protein groups. In suitable model organisms such as yeast, a traditional approach has been to create null mutations in the gene encoding the novel protein of interest, and to use suppressor analysis to identify genetically (functionally) interacting proteins. Alternatively, copurification of complexes of interest followed by use of mass spectrophotometry to assign identity of individual component proteins has been used to define interacting groups based on physical interactions. The genetic approaches offer speed and low cost; the physical approaches offer the certainty that copurified proteins physically function together on the protein level, rather than being connected via indirect regulatory pathways. A third approach, the yeast two-hybrid system, combines the advantages of working with yeast while targeting proteins that physically associate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interaction. Nature 340, 245, 246.

    Article  PubMed  CAS  Google Scholar 

  2. Chien, C. T., Bartel, P. L., Steruglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    Article  PubMed  CAS  Google Scholar 

  3. Durfee, T., Becherer, K., Chen, P. L., Yeh, S. H., Yang, Y., Kilburn, A. E., Lee, W. H., and Elledge, S. J. (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569.

    Article  PubMed  CAS  Google Scholar 

  4. Gyuris, J., Golemis, E. A., Chertkov, H., and Brent, R. (1993) Cdil, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.

    Article  PubMed  CAS  Google Scholar 

  5. Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A. (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214.

    Article  PubMed  CAS  Google Scholar 

  6. Finley, R. and Brent, R. (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA 91, 12,980–12,984.

    Article  PubMed  CAS  Google Scholar 

  7. Bartel, P. L., Roecklein, J. A., SenGupta, D., and Fields, S. (1996) A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet. 12, 72–77.

    Article  PubMed  CAS  Google Scholar 

  8. Fromont-Racine, M., Rain, J.-C., and Legrain, P. (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277–282.

    Article  PubMed  CAS  Google Scholar 

  9. Serebriiskii, I., Khazak, V., and Golemis, E. A. (1999) A two-hybrid dual bait system to discriminate specificity of protein interactions. J. Biol. Chem. 274, 17,080–17,087.

    Article  PubMed  CAS  Google Scholar 

  10. Watson, M. A., Buckholz, R., and Weiner, M. P. (1996) Vectors encoding alternative antibiotic resistance for use in the yeast two-hybrid system. BioTechniques 21, 255–259.

    PubMed  CAS  Google Scholar 

  11. Clontech’s Yeast Protocols Handbook: <http://www.clontech.com/clontech/Manuals/PDF/PT3024-l.pdf>.

  12. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  13. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  14. <http://www.fermentas.com/TechInfo/PCR/DNAamplProtocol.html>.

  15. Petermann, R., Mossier, B. M., Aryee, D. N., and Kovar, H. (1998) A recombination based method to rapidly assess specificity of two-hybrid clones in yeast. Nucleic Acids Res. 26, 2252, 2253.

    Article  PubMed  CAS  Google Scholar 

  16. Schiestl, R. H., and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346.

    Article  PubMed  CAS  Google Scholar 

  17. Duttweiler, H. M. (1996) A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. TIG 12, 340, 341.

    Article  PubMed  CAS  Google Scholar 

  18. Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E., and Boeke, J. D. (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. USA 93, 10,315–10,320.

    Article  PubMed  CAS  Google Scholar 

  19. Serebriiskii, I. and Golemis, E. A. (1996) http://www.fccc.edu/research/labs/golemis/InteractionTrapInWork.html.

  20. Ruden, D. M., Ma, J., Li, Y., Wood, K., and Ptashne, M. (1991) Generating yeast transcriptional activators containing no yeast protein sequences. Nature 350, 250–252.

    Article  PubMed  CAS  Google Scholar 

  21. Brent, R., and Ptashne, M. (1980) The lexA gene product represses its own promoter. Proc. Natl. Acad. Sci. USA 77, 1932–1936.

    Article  PubMed  CAS  Google Scholar 

  22. Little, J. W., Mount, D. W., and Yanisch-Perron, C. R. (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78, 4199–4203.

    Article  PubMed  CAS  Google Scholar 

  23. Brent, R. and Ptashne, M. (1984) A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312, 612–615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Serebriiskii, I.G., Toby, G.G., Finley, R.L., Golemis, E.A. (2001). Genomic Analysis Utilizing the Yeast Two-Hybrid System. In: Starkey, M.P., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 175. Humana Press. https://doi.org/10.1385/1-59259-235-X:415

Download citation

  • DOI: https://doi.org/10.1385/1-59259-235-X:415

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-774-8

  • Online ISBN: 978-1-59259-235-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics