Expression Profiling by Systematic High-Throughput In Situ Hybridization to Whole-Mount Embryos

  • Nicolas Pollet
  • Christof Niehrs
Part of the Methods in Molecular Biology™ book series (MIMB, volume 175)


The genome of a given organism is considered in biology as the fundamental invariant (1). It is virtually the same throughout lifetime and, to a lesser extent, over generations. By contrast, genetic information is expressed in complex and ever-changing temporal and spatial patterns throughout development and differentiation. The description and analysis of these patterns is crucial to elucidate the functions of genes and to understand the network of genetic interactions that underlies the process of normal development.


Reaction Tube Hybridization Buffer Nile Blue Xenopus Embryo Saline Sodium Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Monod, J. (1970) Le hasard et la necessitè, Editions du Seuil, Paris.Google Scholar
  2. 2.
    Bettenhausen, B. and Gossler, A. (1995). Efficient isolation of novel mouse genes differentially expressed in early postimplantation embryos. Genomics 28, 436–441.PubMedCrossRefGoogle Scholar
  3. 3.
    Gawantka, V., Pollet, N., Delius, H., Vingron, M., Pfister, R., Nitsch, R., Blumenstock, C., and Mehrs, C. (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141.PubMedCrossRefGoogle Scholar
  4. 4.
    Kopczynski, C. C., Noordermeer, J. M., Serano, T. L., Chen, W.-C., Pendleton, J. D., Lewis, S., Goodman, C. S., and Rubin, G. M. (1998) A high throughput screen to identify secreted and transmembrane proteins involved in Drosophila embryogenesis. Proc. Natl. Acad. Sci. USA 95, 9973–9978.PubMedCrossRefGoogle Scholar
  5. 5.
    Plickert, G., Gajewski, M., Gehrke, G., Gausepohl, H., Schlossherr, J., and Ibrahim, H. (1997) Automated in situ detection (AISD) of biomolecules. Dev. Gene. Evol. 207, 362–367.CrossRefGoogle Scholar
  6. 6.
    Niehrs, C. (1997) Gene expression screens in vertebrate embryos: more than meets the eye. Genes Funct. 1, 229–231.PubMedCrossRefGoogle Scholar
  7. 7.
    Komiya, T., Tanigawa, Y., and Hirohashi, S. (1997) A large scale in situ hybridisation system using an equalised cDNA library. Anal. Biochem. 254, 23–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilkinson, D.G. and Nieto, M.A. (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373.PubMedCrossRefGoogle Scholar
  9. 9.
    Harland, R. M. (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, K., Gan, L., Boysen, C., and Hood L. (1995) A microtiter plate-based high-throughput DNA purification method. Anal. Biochem. 226, 85–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Islam, N. and Moss, T. (1996) Enzymatic removal of vitelline membrane and other protocol modifications for whole mount in situ hybridization of Xenopus embryos. Trends Genet. 12, 459.PubMedCrossRefGoogle Scholar
  12. 12.
    Nieuwkoop, P. D. and Faber, J. (1984) Normal table of Xenopus laevis (Daudin), 2nd ed., Garland Publishing Inc., New York and London.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Nicolas Pollet
    • 1
  • Christof Niehrs
    • 1
  1. 1.Division of Molecular EmbryologyDeutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations