Detection of Chromosomal Abnormalities by Comparative Genomic Hybridization

  • Mario A. J. A. Hermsen
  • Marjan M. Weiss
  • Gerrit A. Meijer
  • Jan P. A. Baak
Part of the Methods in Molecular Biology™ book series (MIMB, volume 175)


Comparative genomic hybridization (CGH) provides genome-scale overviews of chromosomal copy number changes in tumors (1). Unlike conventional cytogenetic analysis, it needs no cell culturing, making it applicable to practically any kind of clinical specimen from which DNA can be obtained, including archival paraffin-embedded material (1). CGH maps the origins of amplified and deleted DNA sequences on normal chromosomes, thereby highlighting locations of important genes. However, this technique cannot detect chromosomal translocations, inversions, or subchromosomal changes. By its nature, CGH is especially suitable for screening tumors in various stages of development, such as premalignant lesions and invasive carcinomas and metastases, pointing out the location of possible oncogenes or tumor suppressor genes that may play a role in the early onset of malignancy or in the process of metastasis. In addition, CGH can be used to compare different histologic components within one tumor, enabling a better understanding of the relation between phenotype and genotype, or to compare derivative cell lines with the original cell line.


Comparative Genomic Hybridization Metaphase Chromosome Metaphase Spread Saline Sodium Citrate Conventional Cytogenetic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kallioniemi, A., Kallioniemi, O. P., Sudar, D., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821.PubMedCrossRefGoogle Scholar
  2. 2.
    Hermsen, M. A. J. A., Meijer, G. A., Baak, J. P. A., Joenje, H., Walboomers, J. M. M. (1996) Comparative genomic hybridization: a new tool in cancer pathology. Hum. Pathol. 27, 342–349.PubMedCrossRefGoogle Scholar
  3. 3.
    Kallioniemi, O. P., Kallioniemi, A., Piper, J., et al. (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chrom. Cancer 10, 231–243.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiss, M. M., Hermsen, M. A. J. A., Meijer, G. A., Van Grieken, N. C. T., Baak, J. P. A., Kuipers, E. J., and Van Diest, P. J. (1999) Comparative genomic hybridisation (CGH). Mol. Pathol. 52, 243–251.PubMedCrossRefGoogle Scholar
  5. 5.
    Zikelsberger, H., Kulka, U., Lehmann, L., et al. (1998) Genetic heterogeneity in a prostatic carcinoma and associated prostatic intraepithelial neoplasia as demonstrated by combined use of laser-microdissection, degenerate oligonucleotide primed PCR and comparative genomic hybridization. Virchows Arch. 433, 297–304.CrossRefGoogle Scholar
  6. 6.
    Kuukasjarvi, T., Tanner, M., Pennanen, S., et al. (1997) Optimizing DOP-PCR for universal amplification of small DNA samples in comparative genomic hybridization. Genes Chrom. Cancer 18, 94–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Lucito, R., Nakimura, M., West, J. A., et al. (1998) Genetic analysis using genomic representations. Proc. Natl. Acad. Sci. USA 95, 4487–4492.PubMedCrossRefGoogle Scholar
  8. 8.
    Karhu, R., Kahkonen, M., Kuukasjarvi, T., et al. (1997) Quality control of CGH: impact of metaphase chromosomes and the dynamic range of hybridization. tCytometry 28, 198–205.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Mario A. J. A. Hermsen
    • 1
  • Marjan M. Weiss
    • 2
  • Gerrit A. Meijer
    • 1
  • Jan P. A. Baak
    • 1
  1. 1.Department of PathologyFree University Hospital AmsterdamAmsterdamThe Netherlands
  2. 2.Department of GastroenterologyFree University Hospital AmsterdamAmsterdamThe Netherlands

Personalised recommendations