Skip to main content

Sequence-Based Detection of Single Nucleotide Polymorphisms

  • Protocol

Part of the Methods in Molecular Biology™ book series (MIMB,volume 175)


One of the major tasks in human genome analysis is the identification and typing of DNA sequence variations (1). There are many types of sequence variations in the human genome. One type comprises sequences with variations in the number of repeat units such as short tandem repeat polymorphisms in the form of di-, tri, and tetranucleotide repeats; more complex sequence repeats such as variable number tandem repeats; or variations in the lengths of mononucleotide tracks such as A- or T-tracks in the genome. The other major type of variation in the genome arises from discrete changes in a specific DNA sequence such as small but unique base insertions or deletions, or more frequently as single nucleotide substitutions, also known as single nucleotide polymorphisms (SNPs). SNPs are the most abundant form of DNA sequence variation in the human genome (2). Based on their natural frequency and presence in both coding and noncoding regions, single nucleotide substitutions are probably the underlying cause of most phenotypic differences among humans. Therefore, the identification of SNPs in human genes will play an increasingly important role in analyzing genotype-phenotype correlations within and among human populations (2). Amplification of genomic DNA by the polymerase chain reaction (PCR) has greatly simplified the identification of SNPs by eliminating the need to clone and isolate regions of the genome from multiple individuals.


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Lander, E. S. (1996) The new genomics: global views of biology. Science 264, 536–539.

    Article  Google Scholar 

  2. Collins, F. S., Guyer, M. S., and Chakravarti, A. (1997) Variations on a theme: Cataloging human DNA sequence variation. Science 278, 1580, 1581.

    Article  PubMed  CAS  Google Scholar 

  3. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989) Attachment of 40-base-pair G + C-rich sequence (GC-clamp) to genomic fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  PubMed  CAS  Google Scholar 

  4. Underhill, P. A., Jin, L., Lin, A. A., Mehdi, S. Q., Jenkins, T., Vollrath, R. W., Davis, R. W., Cavalli-Sforza, L. L., and Oefner, P. J. (1997) Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 7, 996–1005.

    PubMed  CAS  Google Scholar 

  5. Cotton, R. G., Rodrigues, N. R., and Campbell, R. D. (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85, 4397–4401.

    Article  PubMed  CAS  Google Scholar 

  6. Myers, R. M., Larin, Z., and Maniatis, T. (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230, 1242–1246.

    Article  PubMed  CAS  Google Scholar 

  7. Youil, R., Kemper, B. W., and Cotton, R. G. (1995) Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc. Natl. Acad. Sci. USA 92, 87–91.

    Article  PubMed  CAS  Google Scholar 

  8. Keen, J., Lester, D., Inglehearn, C., Curtis, A., and Bhattacharya, S. (1991) Rapid detection of single-base mismatches as heteroduplexes on hydrolink gels. Trends Genet. 7, 5.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi, K. (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in genomic DNA. Genomics 5, 874–879.

    Google Scholar 

  10. Hacia, J. G., Brody, L. C., Chee, M. S., Fodor, S. P. A., and Collins, F. S. (1996) Detection of heterozygous mutations in BRCA1 using high-density oligonucleotide arrays and two-colour fluorescence analysis. Nature Genet. 14, 441–447.

    Article  PubMed  CAS  Google Scholar 

  11. Chee, M. S., Yang, R, Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winlcler, J., Lockhart, D. J., Morris, M. S., and Fodor, S. P. (1996) Accessing genetic information with high-density DNA arrays. Science 274, 610–614.

    Article  PubMed  CAS  Google Scholar 

  12. Kwok, P., Carlson, C., Yager, T. D., Ankener, W., and Nickerson, D. A. (1994) Comparative analysis of human DNA variations by fluorescence-based sequencing of PCR products. Genomics 23, 138–144.

    Article  PubMed  CAS  Google Scholar 

  13. Nickerson, D. A., Tobe, V. O., and Taylor, S. L. (1997) PolyPhred: automating the detection of single nucleotide substitutions using fluorescence-based sequencing. Nucleic Acids Res. 14, 2745–2751.

    Article  Google Scholar 

  14. Ju, J., Glazer, A. N., and Mathies, R. A. (1996) Energy transfer primers: a new fluorescence labeling paradigm for DNA sequencing and analysis. Nature Med. 2, 246–249.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenblum, B. B., Lee, L. G., Spurgeon, S. L., Khan, S. H., Menchen, S. M., Heiner, C. R., and Chen, S. M. (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500–4504.

    Article  PubMed  CAS  Google Scholar 

  16. Mullikin, J. C. and McMurragy, A. A. (1999) Techview: DNA sequencing. Sequencing the genome, fast. Science 283, 1867–1869.

    Article  PubMed  CAS  Google Scholar 

  17. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  18. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  19. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical interface tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  20. Rieder, M. J., Taylor, S. L., Tobe, V. O., and Nickerson, D. A. (1998) Automating the identification of DNA variations using quality-based fluorescence-resequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nickerson, D.A., Kolker, N., Taylor, S.L., Rieder, M.J. (2001). Sequence-Based Detection of Single Nucleotide Polymorphisms. In: Starkey, M.P., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 175. Humana Press.

Download citation

  • DOI:

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-774-8

  • Online ISBN: 978-1-59259-235-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics